IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v54y2010i10p711-718.html
   My bibliography  Save this article

A novel approach for the recycling of thin film photovoltaic modules

Author

Listed:
  • Berger, Wolfgang
  • Simon, Franz-Georg
  • Weimann, Karin
  • Alsema, Erik A.

Abstract

A sustainable recycling of photovoltaic (PV) thin film modules gains in importance due to the considerable growing of the PV market and the increasing scarcity of the resources for semiconductor materials. The paper presents the development of two strategies for thin film PV recycling based on (wet) mechanical processing for broken modules, and combined thermal and mechanical methods for end-of-life modules. The feasibility of the processing steps was demonstrated in laboratory scale as well as in semi-technical scale using the example of CdTe and CIS modules. Pre-concentrated valuables In and Te from wet mechanical processing can be purified to the appropriate grade for the production of new modules.

Suggested Citation

  • Berger, Wolfgang & Simon, Franz-Georg & Weimann, Karin & Alsema, Erik A., 2010. "A novel approach for the recycling of thin film photovoltaic modules," Resources, Conservation & Recycling, Elsevier, vol. 54(10), pages 711-718.
  • Handle: RePEc:eee:recore:v:54:y:2010:i:10:p:711-718
    DOI: 10.1016/j.resconrec.2009.12.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344909002808
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2009.12.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fthenakis, Vasilis M., 2004. "Life cycle impact analysis of cadmium in CdTe PV production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(4), pages 303-334, August.
    2. Raugei, Marco & Bargigli, Silvia & Ulgiati, Sergio, 2007. "Life cycle assessment and energy pay-back time of advanced photovoltaic modules: CdTe and CIS compared to poly-Si," Energy, Elsevier, vol. 32(8), pages 1310-1318.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marwede, Max & Reller, Armin, 2012. "Future recycling flows of tellurium from cadmium telluride photovoltaic waste," Resources, Conservation & Recycling, Elsevier, vol. 69(C), pages 35-49.
    2. Jain, Suresh & Sharma, Tanya & Gupta, Anil Kumar, 2022. "End-of-life management of solar PV waste in India: Situation analysis and proposed policy framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    3. Kavlak, Goksin & Graedel, T.E., 2013. "Global anthropogenic tellurium cycles for 1940–2010," Resources, Conservation & Recycling, Elsevier, vol. 76(C), pages 21-26.
    4. Kavlak, Goksin & Graedel, T.E., 2013. "Global anthropogenic selenium cycles for 1940–2010," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 17-22.
    5. Wang, Xintong & Xue, Jingguo & Hou, Xueliang, 2023. "Barriers analysis to Chinese waste photovoltaic module recycling under the background of "double carbon"," Renewable Energy, Elsevier, vol. 214(C), pages 39-54.
    6. Domínguez, Adriana & Geyer, Roland, 2017. "Photovoltaic waste assessment in Mexico," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 29-41.
    7. Yan Li & Ge Wang & Bo Shen & Qi Zhang & Boyu Liu & Ruoxi Xu, 2021. "Conception and policy implications of photovoltaic modules end‐of‐life management in China," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(1), January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marwede, Max & Berger, Wolfgang & Schlummer, Martin & Mäurer, Andreas & Reller, Armin, 2013. "Recycling paths for thin-film chalcogenide photovoltaic waste – Current feasible processes," Renewable Energy, Elsevier, vol. 55(C), pages 220-229.
    2. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    3. Aman, M.M. & Solangi, K.H. & Hossain, M.S. & Badarudin, A. & Jasmon, G.B. & Mokhlis, H. & Bakar, A.H.A. & Kazi, S.N, 2015. "A review of Safety, Health and Environmental (SHE) issues of solar energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1190-1204.
    4. Vellini, Michela & Gambini, Marco & Prattella, Valentina, 2017. "Environmental impacts of PV technology throughout the life cycle: Importance of the end-of-life management for Si-panels and CdTe-panels," Energy, Elsevier, vol. 138(C), pages 1099-1111.
    5. Tsai, Bi-Huei & Chang, Chih-Jen & Chang, Chun-Hsien, 2016. "Elucidating the consumption and CO2 emissions of fossil fuels and low-carbon energy in the United States using Lotka–Volterra models," Energy, Elsevier, vol. 100(C), pages 416-424.
    6. Fthenakis, Vasilis & Wang, Wenming & Kim, Hyung Chul, 2009. "Life cycle inventory analysis of the production of metals used in photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 493-517, April.
    7. Carnevale, E. & Lombardi, L. & Zanchi, L., 2014. "Life Cycle Assessment of solar energy systems: Comparison of photovoltaic and water thermal heater at domestic scale," Energy, Elsevier, vol. 77(C), pages 434-446.
    8. Ravikumar, Dwarakanath & Malghan, Deepak, 2013. "Material constraints for indigenous production of CdTe PV: Evidence from a Monte Carlo experiment using India's National Solar Mission Benchmarks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 393-403.
    9. Kaldellis, J.K. & Zafirakis, D. & Kondili, E., 2009. "Optimum autonomous stand-alone photovoltaic system design on the basis of energy pay-back analysis," Energy, Elsevier, vol. 34(9), pages 1187-1198.
    10. Colombo, Emanuela & Rocco, Matteo V. & Toro, Claudia & Sciubba, Enrico, 2015. "An exergy-based approach to the joint economic and environmental impact assessment of possible photovoltaic scenarios: A case study at a regional level in Italy," Ecological Modelling, Elsevier, vol. 318(C), pages 64-74.
    11. Raugei, Marco & Fthenakis, Vasilis, 2010. "Cadmium flows and emissions from CdTe PV: future expectations," Energy Policy, Elsevier, vol. 38(9), pages 5223-5228, September.
    12. Enrica Leccisi & Marco Raugei & Vasilis Fthenakis, 2016. "The Energy and Environmental Performance of Ground-Mounted Photovoltaic Systems—A Timely Update," Energies, MDPI, vol. 9(8), pages 1-13, August.
    13. Hui Fang Yu & Md. Hasanuzzaman & Nasrudin Abd Rahim & Norridah Amin & Noriah Nor Adzman, 2022. "Global Challenges and Prospects of Photovoltaic Materials Disposal and Recycling: A Comprehensive Review," Sustainability, MDPI, vol. 14(14), pages 1-41, July.
    14. Tholkappiyan Ramachandran & Abdel-Hamid I. Mourad & Fathalla Hamed, 2022. "A Review on Solar Energy Utilization and Projects: Development in and around the UAE," Energies, MDPI, vol. 15(10), pages 1-27, May.
    15. Halasah, Suleiman A. & Pearlmutter, David & Feuermann, Daniel, 2013. "Field installation versus local integration of photovoltaic systems and their effect on energy evaluation metrics," Energy Policy, Elsevier, vol. 52(C), pages 462-471.
    16. Tiantian Zhang & Meng Wang & Hongxing Yang, 2018. "A Review of the Energy Performance and Life-Cycle Assessment of Building-Integrated Photovoltaic (BIPV) Systems," Energies, MDPI, vol. 11(11), pages 1-34, November.
    17. Leena Grandell & Mikael Höök, 2015. "Assessing Rare Metal Availability Challenges for Solar Energy Technologies," Sustainability, MDPI, vol. 7(9), pages 1-20, August.
    18. Tyagi, V.V. & Rahim, Nurul A.A. & Rahim, N.A. & Selvaraj, Jeyraj A./L., 2013. "Progress in solar PV technology: Research and achievement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 443-461.
    19. Kaldellis, J.K. & Zafirakis, D. & Kondili, E., 2010. "Energy pay-back period analysis of stand-alone photovoltaic systems," Renewable Energy, Elsevier, vol. 35(7), pages 1444-1454.
    20. Elshkaki, Ayman & Graedel, T.E., 2015. "Solar cell metals and their hosts: A tale of oversupply and undersupply," Applied Energy, Elsevier, vol. 158(C), pages 167-177.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:54:y:2010:i:10:p:711-718. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.