IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v52y2007i2p410-424.html

Managing the potential public health risks from bioaerosol liberation at commercial composting sites in the UK: An analysis of the evidence base

Author

Listed:
  • Sykes, Peter
  • Jones, Ken
  • Wildsmith, John. D.

Abstract

The diversion of biodegradable waste from landfill is of key importance in developing a sustainable waste strategy for the next decade and beyond. The proliferation of waste treatment technologies such as Mechanical Biological Treatment, Anaerobic Digestion and Composting will be paramount in achieving this strategic goal. This paper evaluates the scientific information needed to undertake an effective assessment of the potential public health risks from exposure to bioaerosols in the vicinity of commercial composting activities. Knowledge gaps currently exist in the scientific and regulatory community that limit our ability to effectively characterise source-term emissions, develop reliable dose–response data and accurately model the dispersion of bioaerosols. Consequently reliable risk estimates cannot be developed to inform the management of these potential risks. This uncertainty may prove a barrier to progress in achieving waste diversion and composting targets in Wales and the rest of the UK. A robust and extensive evidence base is required to inform the risk assessment process. This paper advocates the need for further, more focussed research into hazard characterisation of viable and non-viable organisms, improved dose–response data, exposure assessment techniques and an evaluation of the existing risk control and mitigation measures currently adopted. It is hoped that his will enable effective, timely and proportional risk management and mitigation measures to be developed that will foster the confidence required in composting technologies to achieve waste diversion targets and develop sustainable waste strategies.

Suggested Citation

  • Sykes, Peter & Jones, Ken & Wildsmith, John. D., 2007. "Managing the potential public health risks from bioaerosol liberation at commercial composting sites in the UK: An analysis of the evidence base," Resources, Conservation & Recycling, Elsevier, vol. 52(2), pages 410-424.
  • Handle: RePEc:eee:recore:v:52:y:2007:i:2:p:410-424
    DOI: 10.1016/j.resconrec.2007.05.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344907001292
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2007.05.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Hertz-Picciotto, I. & Wartenberg, D. & Simon, R., 1995. "Epidemiology and quantitative risk assessment: A bridge from science to policy," American Journal of Public Health, American Public Health Association, vol. 85(4), pages 484-493.
    2. George E. Apostolakis, 2004. "How Useful Is Quantitative Risk Assessment?," Risk Analysis, John Wiley & Sons, vol. 24(3), pages 515-520, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Drew, G.H. & Jordinson, G.M. & Smith, M.A. & Pollard, S.J.T., 2009. "Evaluating the quality of bioaerosol risk assessments for composting facilities in England and Wales," Resources, Conservation & Recycling, Elsevier, vol. 53(9), pages 507-512.
    2. Wei, Yunmei & Li, Jingyuan & Shi, Dezhi & Liu, Guotao & Zhao, Youcai & Shimaoka, Takayuki, 2017. "Environmental challenges impeding the composting of biodegradable municipal solid waste: A critical review," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 51-65.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    2. Johnson, Caroline A. & Flage, Roger & Guikema, Seth D., 2021. "Feasibility study of PRA for critical infrastructure risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    3. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    4. Senderov, Sergey M. & Smirnova, Elena M. & Vorobev, Sergey V., 2020. "Analysis of vulnerability of fuel supply systems in gas-consuming regions due to failure of critical gas industry facilities," Energy, Elsevier, vol. 212(C).
    5. Luca Allodi & Fabio Massacci, 2017. "Security Events and Vulnerability Data for Cybersecurity Risk Estimation," Risk Analysis, John Wiley & Sons, vol. 37(8), pages 1606-1627, August.
    6. Tidwell, Vincent C. & Lowry, Thomas S. & Binning, David & Graves, Jenny & Peplinski, William J. & Mitchell, Roger, 2019. "Framework for shared drinking water risk assessment," International Journal of Critical Infrastructure Protection, Elsevier, vol. 24(C), pages 37-47.
    7. Terje Aven, 2012. "Foundational Issues in Risk Assessment and Risk Management," Risk Analysis, John Wiley & Sons, vol. 32(10), pages 1647-1656, October.
    8. Qian Zhou & James H. Lambert & Christopher W. Karvetski & Jeffrey M. Keisler & Igor Linkov, 2012. "Flood Protection Diversification to Reduce Probabilities of Extreme Losses," Risk Analysis, John Wiley & Sons, vol. 32(11), pages 1873-1887, November.
    9. Annunziata Faustini & Marina Davoli, 2020. "Attributable Risk to Assess the Health Impact of Air Pollution: Advances, Controversies, State of the Art and Future Needs," IJERPH, MDPI, vol. 17(12), pages 1-17, June.
    10. Andrea Staid & Seth D. Guikema, 2015. "Risk Analysis for U.S. Offshore Wind Farms: The Need for an Integrated Approach," Risk Analysis, John Wiley & Sons, vol. 35(4), pages 587-593, April.
    11. Terje Aven, 2010. "On the Need for Restricting the Probabilistic Analysis in Risk Assessments to Variability," Risk Analysis, John Wiley & Sons, vol. 30(3), pages 354-360, March.
    12. Emanuele Borgonovo & Alessandra Cillo & Curtis L. Smith, 2018. "On the Relationship between Safety and Decision Significance," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1541-1558, August.
    13. Coit, David W. & Zio, Enrico, 2019. "The evolution of system reliability optimization," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    14. Andrews, John & Tolo, Silvia, 2023. "Dynamic and dependent tree theory (D2T2): A framework for the analysis of fault trees with dependent basic events," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    15. Terje Aven, 2020. "Risk Science Contributions: Three Illustrating Examples," Risk Analysis, John Wiley & Sons, vol. 40(10), pages 1889-1899, October.
    16. David M. Hassenzahl, 2006. "Implications of Excessive Precision for Risk Comparisons: Lessons from the Past Four Decades," Risk Analysis, John Wiley & Sons, vol. 26(1), pages 265-276, February.
    17. Vivek Arulnathan & Mohammad Davoud Heidari & Maurice Doyon & Eric P. H. Li & Nathan Pelletier, 2022. "Economic Indicators for Life Cycle Sustainability Assessment: Going beyond Life Cycle Costing," Sustainability, MDPI, vol. 15(1), pages 1-27, December.
    18. John Andrews & Sally Lunt, 2024. "Calculation of the System Unavailability Measures of Component Importance Using the D 2 T 2 Methodology of Fault Tree Analysis," Mathematics, MDPI, vol. 12(2), pages 1-30, January.
    19. Bani-Mustafa, Tasneem & Flage, Roger & Vasseur, Dominique & Zeng, Zhiguo & Zio, Enrico, 2020. "An extended method for evaluating assumptions deviations in quantitative risk assessment and its application to external flooding risk assessment of a nuclear power plant," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    20. Emanuele Borgonovo & Veronica Cappelli & Fabio Maccheroni & Massimo Marinacci, 2015. "Risk Analysis and Decision Theory: Foundations," Working Papers 556, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:52:y:2007:i:2:p:410-424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.