IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v230y2023ics0951832022005749.html
   My bibliography  Save this article

Dynamic and dependent tree theory (D2T2): A framework for the analysis of fault trees with dependent basic events

Author

Listed:
  • Andrews, John
  • Tolo, Silvia

Abstract

Fault tree analysis remains the most commonly employed method, particularly in the safety critical industries, to predict the probability or frequency of system failures. Whilst it has its origins back in the 1960s, the assumptions employed in the majority of commercial fault tree analysis codes have not changed significantly since this time and restrict the ability of the method to represent features of the design, operation and maintenance of modern industrial systems. The inability to include general dependencies between the basic events, the requirement for invariant failure and repair rates, and the inability to account for complex maintenance strategies are major limitations.

Suggested Citation

  • Andrews, John & Tolo, Silvia, 2023. "Dynamic and dependent tree theory (D2T2): A framework for the analysis of fault trees with dependent basic events," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
  • Handle: RePEc:eee:reensy:v:230:y:2023:i:c:s0951832022005749
    DOI: 10.1016/j.ress.2022.108959
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022005749
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108959?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. George E. Apostolakis, 2004. "How Useful Is Quantitative Risk Assessment?," Risk Analysis, John Wiley & Sons, vol. 24(3), pages 515-520, June.
    2. Andrews, John & Prescott, Darren & De Rozières, Florian, 2014. "A stochastic model for railway track asset management," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 76-84.
    3. Zhou, Siwei & Ye, Luyao & Xiong, Shengwu & Xiang, Jianwen, 2022. "Reliability analysis of dynamic fault trees with Priority-AND gates based on irrelevance coverage model," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    4. Reed, Sean, 2017. "An efficient algorithm for exact computation of system and survival signatures using binary decision diagrams," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 257-267.
    5. Chiachío, Manuel & Saleh, Ali & Naybour, Susannah & Chiachío, Juan & Andrews, John, 2022. "Reduction of Petri net maintenance modeling complexity via Approximate Bayesian Computation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    6. Yin, Juan & Cui, Lirong & Balakrishnan, Narayanaswamy, 2022. "Reliability of consecutive-(k,l)-out-of-n: F systems with shared components under non-homogeneous Markov dependence," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Jie & Zheng, Shuwen & Wang, Chong, 2023. "Causal Graph Attention Network with Disentangled Representations for Complex Systems Fault Detection," Reliability Engineering and System Safety, Elsevier, vol. 235(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saleh, Ali & Remenyte-Prescott, Rasa & Prescott, Darren & Chiachío, Manuel, 2024. "Intelligent and adaptive asset management model for railway sections using the iPN method," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    2. Wang, Shaoxuan & Yao, Yuantao & Ge, Daochuan & Lin, Zhixian & Wu, Jie & Yu, Jie, 2023. "Reliability evaluation of standby redundant systems based on the survival signatures methods," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    3. Hashemi, M. & Asadi, M. & Zarezadeh, S., 2020. "Optimal maintenance policies for coherent systems with multi-type components," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    4. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    5. Johnson, Caroline A. & Flage, Roger & Guikema, Seth D., 2021. "Feasibility study of PRA for critical infrastructure risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    6. Terje Aven, 2018. "An Emerging New Risk Analysis Science: Foundations and Implications," Risk Analysis, John Wiley & Sons, vol. 38(5), pages 876-888, May.
    7. Hindolo George-Williams & Geng Feng & Frank PA Coolen & Michael Beer & Edoardo Patelli, 2019. "Extending the survival signature paradigm to complex systems with non-repairable dependent failures," Journal of Risk and Reliability, , vol. 233(4), pages 505-519, August.
    8. Chang, Miaoxin & Huang, Xianzhen & Coolen, Frank PA & Coolen-Maturi, Tahani, 2023. "New reliability model for complex systems based on stochastic processes and survival signature," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1349-1364.
    9. George E. Apostolakis & Douglas M. Lemon, 2005. "A Screening Methodology for the Identification and Ranking of Infrastructure Vulnerabilities Due to Terrorism," Risk Analysis, John Wiley & Sons, vol. 25(2), pages 361-376, April.
    10. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    11. Salomon, Julian & Winnewisser, Niklas & Wei, Pengfei & Broggi, Matteo & Beer, Michael, 2021. "Efficient reliability analysis of complex systems in consideration of imprecision," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    12. Patelli, Edoardo & Feng, Geng & Coolen, Frank P.A. & Coolen-Maturi, Tahani, 2017. "Simulation methods for system reliability using the survival signature," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 327-337.
    13. Di Maio, Francesco & Pettorossi, Chiara & Zio, Enrico, 2023. "Entropy-driven Monte Carlo simulation method for approximating the survival signature of complex infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    14. Yi, He & Balakrishnan, Narayanaswamy & Li, Xiang, 2024. "Joint reliability of linear consecutive k-type systems with shared components in a zigzag structure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    15. Senderov, Sergey M. & Smirnova, Elena M. & Vorobev, Sergey V., 2020. "Analysis of vulnerability of fuel supply systems in gas-consuming regions due to failure of critical gas industry facilities," Energy, Elsevier, vol. 212(C).
    16. Luca Allodi & Fabio Massacci, 2017. "Security Events and Vulnerability Data for Cybersecurity Risk Estimation," Risk Analysis, John Wiley & Sons, vol. 37(8), pages 1606-1627, August.
    17. Tidwell, Vincent C. & Lowry, Thomas S. & Binning, David & Graves, Jenny & Peplinski, William J. & Mitchell, Roger, 2019. "Framework for shared drinking water risk assessment," International Journal of Critical Infrastructure Protection, Elsevier, vol. 24(C), pages 37-47.
    18. Terje Aven, 2012. "Foundational Issues in Risk Assessment and Risk Management," Risk Analysis, John Wiley & Sons, vol. 32(10), pages 1647-1656, October.
    19. Qian Zhou & James H. Lambert & Christopher W. Karvetski & Jeffrey M. Keisler & Igor Linkov, 2012. "Flood Protection Diversification to Reduce Probabilities of Extreme Losses," Risk Analysis, John Wiley & Sons, vol. 32(11), pages 1873-1887, November.
    20. Aven, Terje, 2020. "Three influential risk foundation papers from the 80s and 90s: Are they still state-of-the-art?," Reliability Engineering and System Safety, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:230:y:2023:i:c:s0951832022005749. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.