IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i2p292-d1320280.html
   My bibliography  Save this article

Calculation of the System Unavailability Measures of Component Importance Using the D 2 T 2 Methodology of Fault Tree Analysis

Author

Listed:
  • John Andrews

    (Resilience Engineering Research Group, University of Nottingham, Nottingham NG7 2RD, UK)

  • Sally Lunt

    (Resilience Engineering Research Group, University of Nottingham, Nottingham NG7 2RD, UK)

Abstract

A recent development in Fault Tree Analysis (FTA), known as Dynamic and Dependent Tree Theory (D 2 T 2 ), accounts for dependencies between the basic events, making FTA more powerful. The method uses an integrated combination of Binary Decision Diagrams (BDDs), Stochastic Petri Nets (SPN) and Markov models. Current algorithms enable the prediction of the system failure probability and failure frequency. This paper proposes methods which extend the current capability of the D 2 T 2 framework to calculate component importance measures. Birnbaum’s measure of importance, the Criticality measure of importance, the Risk Achievement Worth (RAW) measure of importance and the Risk Reduction Worth (RRW) measure of importance are considered. This adds a vital ability to the framework, enabling the influence that components have on system failure to be determined and the most effective means of improving system performance to be identified. The algorithms for calculating each measure of importance are described and demonstrated using a pressure vessel cooling system.

Suggested Citation

  • John Andrews & Sally Lunt, 2024. "Calculation of the System Unavailability Measures of Component Importance Using the D 2 T 2 Methodology of Fault Tree Analysis," Mathematics, MDPI, vol. 12(2), pages 1-30, January.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:2:p:292-:d:1320280
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/2/292/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/2/292/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. George E. Apostolakis, 2004. "How Useful Is Quantitative Risk Assessment?," Risk Analysis, John Wiley & Sons, vol. 24(3), pages 515-520, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    2. Johnson, Caroline A. & Flage, Roger & Guikema, Seth D., 2021. "Feasibility study of PRA for critical infrastructure risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    3. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    4. Senderov, Sergey M. & Smirnova, Elena M. & Vorobev, Sergey V., 2020. "Analysis of vulnerability of fuel supply systems in gas-consuming regions due to failure of critical gas industry facilities," Energy, Elsevier, vol. 212(C).
    5. Luca Allodi & Fabio Massacci, 2017. "Security Events and Vulnerability Data for Cybersecurity Risk Estimation," Risk Analysis, John Wiley & Sons, vol. 37(8), pages 1606-1627, August.
    6. Tidwell, Vincent C. & Lowry, Thomas S. & Binning, David & Graves, Jenny & Peplinski, William J. & Mitchell, Roger, 2019. "Framework for shared drinking water risk assessment," International Journal of Critical Infrastructure Protection, Elsevier, vol. 24(C), pages 37-47.
    7. Terje Aven, 2012. "Foundational Issues in Risk Assessment and Risk Management," Risk Analysis, John Wiley & Sons, vol. 32(10), pages 1647-1656, October.
    8. Qian Zhou & James H. Lambert & Christopher W. Karvetski & Jeffrey M. Keisler & Igor Linkov, 2012. "Flood Protection Diversification to Reduce Probabilities of Extreme Losses," Risk Analysis, John Wiley & Sons, vol. 32(11), pages 1873-1887, November.
    9. Andrea Staid & Seth D. Guikema, 2015. "Risk Analysis for U.S. Offshore Wind Farms: The Need for an Integrated Approach," Risk Analysis, John Wiley & Sons, vol. 35(4), pages 587-593, April.
    10. Terje Aven, 2010. "On the Need for Restricting the Probabilistic Analysis in Risk Assessments to Variability," Risk Analysis, John Wiley & Sons, vol. 30(3), pages 354-360, March.
    11. Emanuele Borgonovo & Alessandra Cillo & Curtis L. Smith, 2018. "On the Relationship between Safety and Decision Significance," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1541-1558, August.
    12. Coit, David W. & Zio, Enrico, 2019. "The evolution of system reliability optimization," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    13. Andrews, John & Tolo, Silvia, 2023. "Dynamic and dependent tree theory (D2T2): A framework for the analysis of fault trees with dependent basic events," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    14. Terje Aven, 2020. "Risk Science Contributions: Three Illustrating Examples," Risk Analysis, John Wiley & Sons, vol. 40(10), pages 1889-1899, October.
    15. David M. Hassenzahl, 2006. "Implications of Excessive Precision for Risk Comparisons: Lessons from the Past Four Decades," Risk Analysis, John Wiley & Sons, vol. 26(1), pages 265-276, February.
    16. Vivek Arulnathan & Mohammad Davoud Heidari & Maurice Doyon & Eric P. H. Li & Nathan Pelletier, 2022. "Economic Indicators for Life Cycle Sustainability Assessment: Going beyond Life Cycle Costing," Sustainability, MDPI, vol. 15(1), pages 1-27, December.
    17. Bani-Mustafa, Tasneem & Flage, Roger & Vasseur, Dominique & Zeng, Zhiguo & Zio, Enrico, 2020. "An extended method for evaluating assumptions deviations in quantitative risk assessment and its application to external flooding risk assessment of a nuclear power plant," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    18. Emanuele Borgonovo & Veronica Cappelli & Fabio Maccheroni & Massimo Marinacci, 2015. "Risk Analysis and Decision Theory: Foundations," Working Papers 556, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    19. Beyza, Jesus & Gil, Pablo & Masera, Marcelo & Yusta, Jose M., 2020. "Security assessment of cross-border electricity interconnections," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    20. Kim, Yoo Chan & Yoon, Wan Chul, 2021. "Quantitative representation of the functional resonance analysis method for risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 214(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:2:p:292-:d:1320280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.