IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v47y2006i1p1-25.html
   My bibliography  Save this article

Environmental assessment of shredder residue management

Author

Listed:
  • Boughton, Bob
  • Horvath, Arpad

Abstract

Metal recycling from automobiles, appliances and scrap steel occurs at dedicated metal shredding operations. Shredder residue (SR) consists of glass, rubber, plastics, fibers, dirt, and fines that remain after ferrous and nonferrous metals have been removed. The over 3 million tonnes of SR generated in the U.S. each year are managed by landfilling. Material recovery or energy recovery alternatives to landfilling can be beneficial because of conservation of non-renewable resources and reduction of waste disposal. In this study, the human health and environmental impacts of landfilling and three recovery options (supplemental fuel and mineral feed for cement manufacturing, hydrolysis to light fuel oil, and material recovery for recycling) were quantified and characterized using a life-cycle assessment (LCA) approach. Comparisons were carried out after characterization of emissions relative to potential impact categories of global warming, freshwater aquatic toxicity, acidification, eutrophication, human toxicity, photochemical oxidant creation, and terrestrial ecotoxicity. SR recovery in cement manufacturing could result in 1 million tonnes of coal conservation each year for the U.S. Compared to landfilling, recovery of the fuel and mineral value of SR in cement manufacturing provides net benefits for all environmental impact characteristics considered primarily due to avoided coal mining and landfilling impacts. As much as 750,000tonnes of recyclable materials could be recovered from SR. Material recovery system impact results were very sensitive to process energy requirements as well as the assumptions of percent recovery and the specific material types recovered. Hydrolysis of SR could produce 250 million gallons of light fuel oil equivalent per year. The hydrolysis process requires a significant amount of electricity, the impacts of which are somewhat offset by the avoided impacts of producing fuels from crude oil resources. Primarily due to high electricity consumption, both the hydrolysis and material recovery scenarios yielded trade-offs (some net benefits and some net higher impacts) compared to landfilling. The results of this end-of-life impact assessment showed that the supplement for cement manufacturing option was environmentally beneficial to the current practice of landfilling and appears better in comparison to the other management methods studied.

Suggested Citation

  • Boughton, Bob & Horvath, Arpad, 2006. "Environmental assessment of shredder residue management," Resources, Conservation & Recycling, Elsevier, vol. 47(1), pages 1-25.
  • Handle: RePEc:eee:recore:v:47:y:2006:i:1:p:1-25
    DOI: 10.1016/j.resconrec.2005.09.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344905001370
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2005.09.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hendrik G. van Oss & Amy C. Padovani, 2002. "Cement Manufacture and the Environment: Part I: Chemistry and Technology," Journal of Industrial Ecology, Yale University, vol. 6(1), pages 89-105, January.
    2. Saxena, S.C. & Rao, N.S. & Rehmat, A. & Mensinger, M.C., 1995. "Combustion and co-combustion of auto fluff," Energy, Elsevier, vol. 20(9), pages 877-887.
    3. Hendrik G. van Oss & Amy C. Padovani, 2003. "Cement Manufacture and the Environment Part II: Environmental Challenges and Opportunities," Journal of Industrial Ecology, Yale University, vol. 7(1), pages 93-126, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vermeulen, Isabel & Block, Chantal & Van Caneghem, Jo & Dewulf, Wim & Sikdar, Subhas K. & Vandecasteele, Carlo, 2012. "Sustainability assessment of industrial waste treatment processes: The case of automotive shredder residue," Resources, Conservation & Recycling, Elsevier, vol. 69(C), pages 17-28.
    2. Malcolm Richard, Gent & Mario, Menendez & Javier, Toraño & Susana, Torno, 2011. "Optimization of the recovery of plastics for recycling by density media separation cyclones," Resources, Conservation & Recycling, Elsevier, vol. 55(4), pages 472-482.
    3. Boughton, Bob, 2007. "Evaluation of shredder residue as cement manufacturing feedstock," Resources, Conservation & Recycling, Elsevier, vol. 51(3), pages 621-642.
    4. Simic, Vladimir & Dimitrijevic, Branka, 2012. "Production planning for vehicle recycling factories in the EU legislative and global business environments," Resources, Conservation & Recycling, Elsevier, vol. 60(C), pages 78-88.
    5. Berzi, Lorenzo & Delogu, Massimo & Pierini, Marco & Romoli, Filippo, 2016. "Evaluation of the end-of-life performance of a hybrid scooter with the application of recyclability and recoverability assessment methods," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 140-155.
    6. Santini, Alessandro & Herrmann, Christoph & Passarini, Fabrizio & Vassura, Ivano & Luger, Tobias & Morselli, Luciano, 2010. "Assessment of Ecodesign potential in reaching new recycling targets," Resources, Conservation & Recycling, Elsevier, vol. 54(12), pages 1128-1134.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boughton, Bob, 2007. "Evaluation of shredder residue as cement manufacturing feedstock," Resources, Conservation & Recycling, Elsevier, vol. 51(3), pages 621-642.
    2. Woodward, Rachel & Duffy, Noel, 2011. "Cement and concrete flow analysis in a rapidly expanding economy: Ireland as a case study," Resources, Conservation & Recycling, Elsevier, vol. 55(4), pages 448-455.
    3. Azad Rahman & Mohammad G. Rasul & M.M.K. Khan & Subhash C. Sharma, 2017. "Assessment of Energy Performance and Emission Control Using Alternative Fuels in Cement Industry through a Process Model," Energies, MDPI, vol. 10(12), pages 1-17, December.
    4. Hashimoto, Shizuka & Fujita, Tsuyoshi & Geng, Yong & Nagasawa, Emiri, 2010. "Realizing CO2 emission reduction through industrial symbiosis: A cement production case study for Kawasaki," Resources, Conservation & Recycling, Elsevier, vol. 54(10), pages 704-710.
    5. Nuno Cristelo & Jhonathan Rivera & Tiago Miranda & Ana Fernández-Jiménez, 2021. "Stabilisation of a Plastic Soil with Alkali Activated Cements Developed from Industrial Wastes," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    6. Zorpas, Antonis A. & Inglezakis, Vassilis J., 2012. "Automotive industry challenges in meeting EU 2015 environmental standard," Technology in Society, Elsevier, vol. 34(1), pages 55-83.
    7. Sanna, Aimaro & Dri, Marco & Hall, Matthew R. & Maroto-Valer, Mercedes, 2012. "Waste materials for carbon capture and storage by mineralisation (CCSM) – A UK perspective," Applied Energy, Elsevier, vol. 99(C), pages 545-554.
    8. Meredith Fowlie & Mar Reguant & Stephen P. Ryan, 2016. "Market-Based Emissions Regulation and Industry Dynamics," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 249-302.
    9. Navia, R. & Rivela, B. & Lorber, K.E. & Méndez, R., 2006. "Recycling contaminated soil as alternative raw material in cement facilities: Life cycle assessment," Resources, Conservation & Recycling, Elsevier, vol. 48(4), pages 339-356.
    10. Atmaca, Adem & Kanoglu, Mehmet, 2012. "Reducing energy consumption of a raw mill in cement industry," Energy, Elsevier, vol. 42(1), pages 261-269.
    11. Reijnders, L., 2005. "Disposal, uses and treatments of combustion ashes: a review," Resources, Conservation & Recycling, Elsevier, vol. 43(3), pages 313-336.
    12. Ying-Liang Chen & Juu-En Chang & Ming-Sheng Ko, 2017. "Reusing Desulfurization Slag in Cement Clinker Production and the Influence on the Formation of Clinker Phases," Sustainability, MDPI, vol. 9(9), pages 1-14, September.
    13. Cao, Zhi & Shen, Lei & Zhao, Jianan & Liu, Litao & Zhong, Shuai & Yang, Yan, 2016. "Modeling the dynamic mechanism between cement CO2 emissions and clinker quality to realize low-carbon cement," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 116-126.
    14. Jean Kabongo & Olivier Boiral, 2011. "Creating Value with Wastes: A Model and Typology of Sustainability Within Firms," Business Strategy and the Environment, Wiley Blackwell, vol. 20(7), pages 441-455, November.
    15. Peter Holmes & Tom Reilly & Jim Rollo, 2011. "Border carbon adjustments and the potential for protectionism," Climate Policy, Taylor & Francis Journals, vol. 11(2), pages 883-900, March.
    16. Jeffrey T. Macher & Nathan H. Miller & Matthew Osborne, 2021. "Finding Mr. Schumpeter: technology adoption in the cement industry," RAND Journal of Economics, RAND Corporation, vol. 52(1), pages 78-99, March.
    17. Muhammad Mubashir Ajmal & Asad Ullah Qazi & Ali Ahmed & Ubaid Ahmad Mughal & Safeer Abbas & Syed Minhaj Saleem Kazmi & Muhammad Junaid Munir, 2023. "Structural Performance of Energy Efficient Geopolymer Concrete Confined Masonry: An Approach towards Decarbonization," Energies, MDPI, vol. 16(8), pages 1-27, April.
    18. Yurong Zhang & Chaojun Mao & Jiandong Wang & Yanhong Gao & Junzhi Zhang, 2020. "Sustainability of Reinforced Concrete Beams with/without BF Influenced by Cracking Capacity and Chloride Diffusion," Sustainability, MDPI, vol. 12(3), pages 1-12, February.
    19. Chau, C.K. & Leung, T.M. & Ng, W.Y., 2015. "A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings," Applied Energy, Elsevier, vol. 143(C), pages 395-413.
    20. Fang Zhang & Hong Fang & Junjie Wu & Damian Ward, 2016. "Environmental Efficiency Analysis of Listed Cement Enterprises in China," Sustainability, MDPI, vol. 8(5), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:47:y:2006:i:1:p:1-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.