IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v6y2002i1p89-105.html
   My bibliography  Save this article

Cement Manufacture and the Environment: Part I: Chemistry and Technology

Author

Listed:
  • Hendrik G. van Oss
  • Amy C. Padovani

Abstract

Hydraulic (chiefly portland) cement is the binding agent in concrete and mortar and thus a key component of a country's construction sector. Concrete is arguably the most abundant of all manufactured solid materials. Portland cement is made primarily from finely ground clinker, which itself is composed dominantly of hydraulically active calcium silicate minerals formed through high‐temperature burning of limestone and other materials in a kiln. This process requires approximately 1.7 tons of raw materials per ton of clinker produced and yields about 1 ton of carbon dioxide (CO2) emissions, of which cal‐cination of limestone and the combustion of fuels each con‐tribute about half. The overall level of CO2 output makes the cement industry one of the top two manufacturing industry sources of greenhouse gases; however, in many countries, the cement industry's contribution is a small fraction of that from fossil fuel combustion by power plants and motor vehicles. The nature of clinker and the enormous heat requirements of its manufacture allow the cement industry to consume a wide variety of waste raw materials and fuels, thus providing the opportunity to apply key concepts of industrial ecology, most notably the closing of loops through the use of by‐products of other industries (industrial symbiosis). In this article, the chemistry and technology of cement manufacture are summarized. In a forthcoming companion ar‐ticle (part II), some of the environmental challenges and op‐portunities facing the cement industry are described. Because of the size and scope of the U.S. cement industry, the analysis relies primarily on data and practices from the United States.

Suggested Citation

  • Hendrik G. van Oss & Amy C. Padovani, 2002. "Cement Manufacture and the Environment: Part I: Chemistry and Technology," Journal of Industrial Ecology, Yale University, vol. 6(1), pages 89-105, January.
  • Handle: RePEc:bla:inecol:v:6:y:2002:i:1:p:89-105
    DOI: 10.1162/108819802320971650
    as

    Download full text from publisher

    File URL: https://doi.org/10.1162/108819802320971650
    Download Restriction: no

    File URL: https://libkey.io/10.1162/108819802320971650?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hashimoto, Shizuka & Fujita, Tsuyoshi & Geng, Yong & Nagasawa, Emiri, 2010. "Realizing CO2 emission reduction through industrial symbiosis: A cement production case study for Kawasaki," Resources, Conservation & Recycling, Elsevier, vol. 54(10), pages 704-710.
    2. Boughton, Bob, 2007. "Evaluation of shredder residue as cement manufacturing feedstock," Resources, Conservation & Recycling, Elsevier, vol. 51(3), pages 621-642.
    3. Nuno Cristelo & Jhonathan Rivera & Tiago Miranda & Ana Fernández-Jiménez, 2021. "Stabilisation of a Plastic Soil with Alkali Activated Cements Developed from Industrial Wastes," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    4. Woodward, Rachel & Duffy, Noel, 2011. "Cement and concrete flow analysis in a rapidly expanding economy: Ireland as a case study," Resources, Conservation & Recycling, Elsevier, vol. 55(4), pages 448-455.
    5. Teresa Annunziata Branca & Barbara Fornai & Valentina Colla & Maria Ilaria Pistelli & Eros Luciano Faraci & Filippo Cirilli & Antonius Johannes Schröder, 2021. "Industrial Symbiosis and Energy Efficiency in European Process Industries: A Review," Sustainability, MDPI, vol. 13(16), pages 1-37, August.
    6. Cao, Zhi & Shen, Lei & Zhao, Jianan & Liu, Litao & Zhong, Shuai & Yang, Yan, 2016. "Modeling the dynamic mechanism between cement CO2 emissions and clinker quality to realize low-carbon cement," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 116-126.
    7. Azad Rahman & Mohammad G. Rasul & M.M.K. Khan & Subhash C. Sharma, 2017. "Assessment of Energy Performance and Emission Control Using Alternative Fuels in Cement Industry through a Process Model," Energies, MDPI, vol. 10(12), pages 1-17, December.
    8. Fang Zhang & Hong Fang & Junjie Wu & Damian Ward, 2016. "Environmental Efficiency Analysis of Listed Cement Enterprises in China," Sustainability, MDPI, vol. 8(5), pages 1-19, May.
    9. Ying-Liang Chen & Juu-En Chang & Ming-Sheng Ko, 2017. "Reusing Desulfurization Slag in Cement Clinker Production and the Influence on the Formation of Clinker Phases," Sustainability, MDPI, vol. 9(9), pages 1-14, September.
    10. Boughton, Bob & Horvath, Arpad, 2006. "Environmental assessment of shredder residue management," Resources, Conservation & Recycling, Elsevier, vol. 47(1), pages 1-25.
    11. Jean Kabongo & Olivier Boiral, 2011. "Creating Value with Wastes: A Model and Typology of Sustainability Within Firms," Business Strategy and the Environment, Wiley Blackwell, vol. 20(7), pages 441-455, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:6:y:2002:i:1:p:89-105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.