IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v127y2017icp233-243.html
   My bibliography  Save this article

An overview of recycling and treatment of spent LiFePO4 batteries in China

Author

Listed:
  • Wang, Wei
  • Wu, Yufeng

Abstract

The number of spent LiFePO4 batteries has increased with the rapid development of the electric vehicle industry in China. Recycling of spent LiFePO4 batteries is important not only for the treatment of waste but also for the recovery of useful resources. However, the treatment of spent LiFePO4 batteries is challenging because LiFePO4 batteries do not contain any precious metals, treatment is complex using traditional recycling process, and the number of spent batteries recovered from the public has been very small recently. Therefore, it is necessary to summarize the existing problems and propose a proper recycling route for spent LiFePO4 batteries.

Suggested Citation

  • Wang, Wei & Wu, Yufeng, 2017. "An overview of recycling and treatment of spent LiFePO4 batteries in China," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 233-243.
  • Handle: RePEc:eee:recore:v:127:y:2017:i:c:p:233-243
    DOI: 10.1016/j.resconrec.2017.08.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344917302677
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2017.08.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hammond, Geoffrey P. & Hazeldine, Tom, 2015. "Indicative energy technology assessment of advanced rechargeable batteries," Applied Energy, Elsevier, vol. 138(C), pages 559-571.
    2. J.-M. Tarascon & M. Armand, 2001. "Issues and challenges facing rechargeable lithium batteries," Nature, Nature, vol. 414(6861), pages 359-367, November.
    3. Dewulf, Jo & Van der Vorst, Geert & Denturck, Kim & Van Langenhove, Herman & Ghyoot, Wouter & Tytgat, Jan & Vandeputte, Kurt, 2010. "Recycling rechargeable lithium ion batteries: Critical analysis of natural resource savings," Resources, Conservation & Recycling, Elsevier, vol. 54(4), pages 229-234.
    4. Bauer, Christian & Hofer, Johannes & Althaus, Hans-Jörg & Del Duce, Andrea & Simons, Andrew, 2015. "The environmental performance of current and future passenger vehicles: Life cycle assessment based on a novel scenario analysis framework," Applied Energy, Elsevier, vol. 157(C), pages 871-883.
    5. Zhao, Qinghua & Chen, Ming, 2011. "A comparison of ELV recycling system in China and Japan and China's strategies," Resources, Conservation & Recycling, Elsevier, vol. 57(C), pages 15-21.
    6. Wang, Xue & Gaustad, Gabrielle & Babbitt, Callie W. & Richa, Kirti, 2014. "Economies of scale for future lithium-ion battery recycling infrastructure," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 53-62.
    7. Lee, Meng Hong & Chang, Dong-Shang, 2016. "Allocative efficiency of high-power Li-ion batteries from automotive mode (AM) to storage mode (SM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 60-67.
    8. Sun, Xin & Hao, Han & Zhao, Fuquan & Liu, Zongwei, 2017. "Tracing global lithium flow: A trade-linked material flow analysis," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 50-61.
    9. Richa, Kirti & Babbitt, Callie W. & Gaustad, Gabrielle & Wang, Xue, 2014. "A future perspective on lithium-ion battery waste flows from electric vehicles," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 63-76.
    10. Zhang, Suopeng & Zhang, Mingli & Yu, Xueying & Ren, Hao, 2016. "What keeps Chinese from recycling: Accessibility of recycling facilities and the behavior," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 176-186.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Mengmeng & Liu, Kang & Dutta, Shanta & Alessi, Daniel S. & Rinklebe, Jörg & Ok, Yong Sik & Tsang, Daniel C.W., 2022. "Recycling of lithium iron phosphate batteries: Status, technologies, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Zhijun & Li, Huajie & Yan, Wenyi & Lv, Weiguang & Zhang, Guangming & Lv, Longyi & Sun, Li & Sun, Zhi & Gao, Wenfang, 2023. "Comprehensive evaluation on production and recycling of lithium-ion batteries: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    2. Hao, Han & Qiao, Qinyu & Liu, Zongwei & Zhao, Fuquan, 2017. "Impact of recycling on energy consumption and greenhouse gas emissions from electric vehicle production: The China 2025 case," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 114-125.
    3. Sverdrup, Harald Ulrik, 2016. "Modelling global extraction, supply, price and depletion of the extractable geological resources with the LITHIUM model," Resources, Conservation & Recycling, Elsevier, vol. 114(C), pages 112-129.
    4. Ye, Bin & Yang, Peng & Jiang, Jingjing & Miao, Lixin & Shen, Bo & Li, Ji, 2017. "Feasibility and economic analysis of a renewable energy powered special town in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 40-50.
    5. Zhang, Chao & Wei, Yi-Li & Cao, Peng-Fei & Lin, Meng-Chang, 2018. "Energy storage system: Current studies on batteries and power condition system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3091-3106.
    6. Nguyen-Tien, Viet & Dai, Qiang & Harper, Gavin D.J. & Anderson, Paul A. & Elliott, Robert J.R., 2022. "Optimising the geospatial configuration of a future lithium ion battery recycling industry in the transition to electric vehicles and a circular economy," Applied Energy, Elsevier, vol. 321(C).
    7. Troy, Stefanie & Schreiber, Andrea & Reppert, Thorsten & Gehrke, Hans-Gregor & Finsterbusch, Martin & Uhlenbruck, Sven & Stenzel, Peter, 2016. "Life Cycle Assessment and resource analysis of all-solid-state batteries," Applied Energy, Elsevier, vol. 169(C), pages 757-767.
    8. Lizin, Sebastien & Van Dael, Miet & Van Passel, Steven, 2017. "Battery pack recycling: Behaviour change interventions derived from an integrative theory of planned behaviour study," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 66-82.
    9. Peters, Jens F. & Baumann, Manuel & Zimmermann, Benedikt & Braun, Jessica & Weil, Marcel, 2017. "The environmental impact of Li-Ion batteries and the role of key parameters – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 491-506.
    10. Gang Li & Mengyu Lu & Sen Lai & Yonghong Li, 2023. "Research on Power Battery Recycling in the Green Closed-Loop Supply Chain: An Evolutionary Game-Theoretic Analysis," Sustainability, MDPI, vol. 15(13), pages 1-18, July.
    11. Zeng, Xianlai & Li, Jinhui, 2013. "Implications for the carrying capacity of lithium reserve in China," Resources, Conservation & Recycling, Elsevier, vol. 80(C), pages 58-63.
    12. Mohammadmahdi Ghiji & Vasily Novozhilov & Khalid Moinuddin & Paul Joseph & Ian Burch & Brigitta Suendermann & Grant Gamble, 2020. "A Review of Lithium-Ion Battery Fire Suppression," Energies, MDPI, vol. 13(19), pages 1-30, October.
    13. Farel, Romain & Yannou, Bernard & Ghaffari, Asma & Leroy, Yann, 2013. "A cost and benefit analysis of future end-of-life vehicle glazing recycling in France: A systematic approach," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 54-65.
    14. Desreveaux, A. & Bouscayrol, A. & Trigui, R. & Hittinger, E. & Castex, E. & Sirbu, G.M., 2023. "Accurate energy consumption for comparison of climate change impact of thermal and electric vehicles," Energy, Elsevier, vol. 268(C).
    15. Marit Mohr & Jens F. Peters & Manuel Baumann & Marcel Weil, 2020. "Toward a cell‐chemistry specific life cycle assessment of lithium‐ion battery recycling processes," Journal of Industrial Ecology, Yale University, vol. 24(6), pages 1310-1322, December.
    16. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    17. Cherepovitsyn, Alexey & Solovyova, Victoria & Dmitrieva, Diana, 2023. "New challenges for the sustainable development of the rare-earth metals sector in Russia: Transforming industrial policies," Resources Policy, Elsevier, vol. 81(C).
    18. Nadia Belmonte & Carlo Luetto & Stefano Staulo & Paola Rizzi & Marcello Baricco, 2017. "Case Studies of Energy Storage with Fuel Cells and Batteries for Stationary and Mobile Applications," Challenges, MDPI, vol. 8(1), pages 1-15, March.
    19. Nenming Wang & Guwen Tang, 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(6), pages 1-35, March.
    20. Ziheng Zhang & Maxim Avdeev & Huaican Chen & Wen Yin & Wang Hay Kan & Guang He, 2022. "Lithiated Prussian blue analogues as positive electrode active materials for stable non-aqueous lithium-ion batteries," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:127:y:2017:i:c:p:233-243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.