IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v83y2014icp53-62.html
   My bibliography  Save this article

Economies of scale for future lithium-ion battery recycling infrastructure

Author

Listed:
  • Wang, Xue
  • Gaustad, Gabrielle
  • Babbitt, Callie W.
  • Richa, Kirti

Abstract

While lithium-ion battery (LIB) technology has improved substantially to achieve better performance in a wide variety of applications, this technological progress has led to a diverse mix of batteries in use that ultimately require waste management. Development of a robust end-of-life battery infrastructure requires a better understanding of how to maximize the economic opportunity of battery recycling while mitigating the uncertainties associated with a highly variable waste stream. This paper develops and applies an optimization model to analyze the profitability of recycling facilities given current estimates of LIB technologies, commodity market prices of materials expected to be recovered, and material composition for three common battery types (differentiated on the basis of cathode chemistry). Sensitivity analysis shows that the profitability is highly dependent on the expected mix of cathode chemistries in the waste stream and the resultant variability in material mass and value. The potential values of waste streams comprised of different cathode chemistry types show a variability ranging from $860 per ton11The word “ton” in this paper indicates metric ton (1000kg). for LiMn2O4 cathode batteries to $8900 per ton for LiCoO2 cathode batteries. In addition, these initial results and a policy case study can also help to promote end-of-life management and relative policymaking for spent LIBs.

Suggested Citation

  • Wang, Xue & Gaustad, Gabrielle & Babbitt, Callie W. & Richa, Kirti, 2014. "Economies of scale for future lithium-ion battery recycling infrastructure," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 53-62.
  • Handle: RePEc:eee:recore:v:83:y:2014:i:c:p:53-62
    DOI: 10.1016/j.resconrec.2013.11.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344913002541
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2013.11.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frederick T. Moore, 1959. "Economies of Scale: Some Statistical Evidence," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 73(2), pages 232-245.
    2. W. Kip Viscusi & Joel Huber & Jason Bell & Caroline Cecot, 2013. "Discontinuous Behavioral Responses to Recycling Laws and Plastic Water Bottle Deposits," American Law and Economics Review, American Law and Economics Association, vol. 15(1), pages 110-155.
    3. Kahhat, Ramzy & Kim, Junbeum & Xu, Ming & Allenby, Braden & Williams, Eric & Zhang, Peng, 2008. "Exploring e-waste management systems in the United States," Resources, Conservation & Recycling, Elsevier, vol. 52(7), pages 955-964.
    4. Kang, Hai-Yong & Schoenung, Julie M., 2005. "Electronic waste recycling: A review of U.S. infrastructure and technology options," Resources, Conservation & Recycling, Elsevier, vol. 45(4), pages 368-400.
    5. Dewulf, Jo & Van der Vorst, Geert & Denturck, Kim & Van Langenhove, Herman & Ghyoot, Wouter & Tytgat, Jan & Vandeputte, Kurt, 2010. "Recycling rechargeable lithium ion batteries: Critical analysis of natural resource savings," Resources, Conservation & Recycling, Elsevier, vol. 54(4), pages 229-234.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aid, Graham & Eklund, Mats & Anderberg, Stefan & Baas, Leenard, 2017. "Expanding roles for the Swedish waste management sector in inter-organizational resource management," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 85-97.
    2. Nguyen-Tien, Viet & Dai, Qiang & Harper, Gavin D.J. & Anderson, Paul A. & Elliott, Robert J.R., 2022. "Optimising the geospatial configuration of a future lithium ion battery recycling industry in the transition to electric vehicles and a circular economy," Applied Energy, Elsevier, vol. 321(C).
    3. Ye, Bin & Yang, Peng & Jiang, Jingjing & Miao, Lixin & Shen, Bo & Li, Ji, 2017. "Feasibility and economic analysis of a renewable energy powered special town in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 40-50.
    4. Sverdrup, Harald Ulrik, 2016. "Modelling global extraction, supply, price and depletion of the extractable geological resources with the LITHIUM model," Resources, Conservation & Recycling, Elsevier, vol. 114(C), pages 112-129.
    5. Richa, Kirti & Babbitt, Callie W. & Gaustad, Gabrielle & Wang, Xue, 2014. "A future perspective on lithium-ion battery waste flows from electric vehicles," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 63-76.
    6. Ren, Zhijun & Li, Huajie & Yan, Wenyi & Lv, Weiguang & Zhang, Guangming & Lv, Longyi & Sun, Li & Sun, Zhi & Gao, Wenfang, 2023. "Comprehensive evaluation on production and recycling of lithium-ion batteries: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    7. Diana Roa & Knut Einar Rosendahl, 2023. "Policies for Material Circularity: the Case of Lithium," Circular Economy and Sustainability,, Springer.
    8. Simon, Bálint & Ziemann, Saskia & Weil, Marcel, 2015. "Potential metal requirement of active materials in lithium-ion battery cells of electric vehicles and its impact on reserves: Focus on Europe," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 300-310.
    9. Wang, Wei & Wu, Yufeng, 2017. "An overview of recycling and treatment of spent LiFePO4 batteries in China," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 233-243.
    10. Agrawal, Saurabh & Singh, Rajesh K. & Murtaza, Qasim, 2015. "A literature review and perspectives in reverse logistics," Resources, Conservation & Recycling, Elsevier, vol. 97(C), pages 76-92.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mallawarachchi, Harshani & Karunasena, Gayani, 2012. "Electronic and electrical waste management in Sri Lanka: Suggestions for national policy enhancements," Resources, Conservation & Recycling, Elsevier, vol. 68(C), pages 44-53.
    2. Nnorom, I.C. & Osibanjo, O. & Ogwuegbu, M.O.C., 2011. "Global disposal strategies for waste cathode ray tubes," Resources, Conservation & Recycling, Elsevier, vol. 55(3), pages 275-290.
    3. Rahmani, Mehdi & Nabizadeh, Ramin & Yaghmaeian, Kamyar & Mahvi, Amir Hossein & Yunesian, Massoud, 2014. "Estimation of waste from computers and mobile phones in Iran," Resources, Conservation & Recycling, Elsevier, vol. 87(C), pages 21-29.
    4. Abdul Khaliq & Muhammad Akbar Rhamdhani & Geoffrey Brooks & Syed Masood, 2014. "Metal Extraction Processes for Electronic Waste and Existing Industrial Routes: A Review and Australian Perspective," Resources, MDPI, vol. 3(1), pages 1-28, February.
    5. Borthakur, Anwesha & Govind, Madhav, 2017. "Emerging trends in consumers’ E-waste disposal behaviour and awareness: A worldwide overview with special focus on India," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 102-113.
    6. Marit Mohr & Jens F. Peters & Manuel Baumann & Marcel Weil, 2020. "Toward a cell‐chemistry specific life cycle assessment of lithium‐ion battery recycling processes," Journal of Industrial Ecology, Yale University, vol. 24(6), pages 1310-1322, December.
    7. Gemina Quest & Rosalie Arendt & Christian Klemm & Vanessa Bach & Janik Budde & Peter Vennemann & Matthias Finkbeiner, 2022. "Integrated Life Cycle Assessment (LCA) of Power and Heat Supply for a Neighborhood: A Case Study of Herne, Germany," Energies, MDPI, vol. 15(16), pages 1-21, August.
    8. Katrina N. Burns & Kan Sun & Julius N. Fobil & Richard L. Neitzel, 2016. "Heart Rate, Stress, and Occupational Noise Exposure among Electronic Waste Recycling Workers," IJERPH, MDPI, vol. 13(1), pages 1-16, January.
    9. Michalis Nikiforos, 2013. "The (Normal) Rate of Capacity Utilization at the Firm Level," Metroeconomica, Wiley Blackwell, vol. 64(3), pages 513-538, July.
    10. Lee, Michael James & Rahimifard, Shahin, 2012. "An air-based automated material recycling system for postconsumer footwear products," Resources, Conservation & Recycling, Elsevier, vol. 69(C), pages 90-99.
    11. Viscusi, W. Kip & Huber, Joel & Bell, Jason, 2023. "Changes in household recycling behavior: Evidence from panel data," Ecological Economics, Elsevier, vol. 208(C).
    12. -, 1981. "Estudios técnicos y prognosis de costos: criterios para escoger proyectos desde el punto de vista de la empresa," Sede de la CEPAL en Santiago (Estudios e Investigaciones) 33781, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    13. Michael Freeman & Nicos Savva & Stefan Scholtes, 2021. "Economies of Scale and Scope in Hospitals: An Empirical Study of Volume Spillovers," Management Science, INFORMS, vol. 67(2), pages 673-697, February.
    14. Fabio Magrassi & Adriana Del Borghi & Michela Gallo & Carlo Strazza & Michela Robba, 2016. "Optimal Planning of Sustainable Buildings: Integration of Life Cycle Assessment and Optimization in a Decision Support System (DSS)," Energies, MDPI, vol. 9(7), pages 1-15, June.
    15. Wang, Wei & Wu, Yufeng, 2017. "An overview of recycling and treatment of spent LiFePO4 batteries in China," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 233-243.
    16. Ziemann, Saskia & Weil, Marcel & Schebek, Liselotte, 2012. "Tracing the fate of lithium––The development of a material flow model," Resources, Conservation & Recycling, Elsevier, vol. 63(C), pages 26-34.
    17. Lizin, Sebastien & Van Dael, Miet & Van Passel, Steven, 2017. "Battery pack recycling: Behaviour change interventions derived from an integrative theory of planned behaviour study," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 66-82.
    18. Mary Lawhon, 2012. "Relational Power in the Governance of a South African E-Waste Transition," Environment and Planning A, , vol. 44(4), pages 954-971, April.
    19. Barbara V. Kasulaitis & Callie W. Babbitt & Andrew K. Krock, 2019. "Dematerialization and the Circular Economy: Comparing Strategies to Reduce Material Impacts of the Consumer Electronic Product Ecosystem," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 119-132, February.
    20. Pérez-Belis, V. & Bovea, M.D. & Gómez, A., 2013. "Waste electric and electronic toys: Management practices and characterisation," Resources, Conservation & Recycling, Elsevier, vol. 77(C), pages 1-12.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:83:y:2014:i:c:p:53-62. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.