IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v116y2017icp53-60.html
   My bibliography  Save this article

Variability-based optimal design for robust plastic recycling systems

Author

Listed:
  • Nakatani, Jun
  • Konno, Kiyoto
  • Moriguchi, Yuichi

Abstract

The demand for recovered materials affects the profitability of the recycling processes and at the same time is susceptible to changes in external factors such as resource prices. Therefore, variability of such external parameters should be considered, when designing a recycling system. In this study, we develop a framework for the variability-based optimal design of plastic recycling for constructing a robust recycling system over external changes in the market such as fluctuations of material prices. The subject of this study is a sorting facility of post-consumer plastics equipped with automated sorting machines. The gross operating profit (GOP) is formulated based on a process model of the plastic sorting facility, internal and external parameters such as recovery ratios and sales prices of recovered plastics by resin type. By combining integer programming and Monte Carlo simulation, we obtain the potential optimal solutions that can maximize the GOP depending on the variability of plastics sales prices and their correlations between resin types, which are estimated based on the statistics for the interval between 2007 and 2011. Distributions of the optimal solutions and variability of the GOP are visualized according to the import price of naphtha for supporting decision-makers to determine resin types that should be recovered. Based on the results, we recommend the solution where polyethylene, polypropylene, and polystyrene are recovered. Moreover, the recommended solution is validated with the observed sales prices of plastics by resin type between 2012 and 2014.

Suggested Citation

  • Nakatani, Jun & Konno, Kiyoto & Moriguchi, Yuichi, 2017. "Variability-based optimal design for robust plastic recycling systems," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 53-60.
  • Handle: RePEc:eee:recore:v:116:y:2017:i:c:p:53-60
    DOI: 10.1016/j.resconrec.2016.09.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344916302671
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2016.09.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vadenbo, Carl & Hellweg, Stefanie & Guillén-Gosálbez, Gonzalo, 2014. "Multi-objective optimization of waste and resource management in industrial networks – Part I: Model description," Resources, Conservation & Recycling, Elsevier, vol. 89(C), pages 52-63.
    2. Vadde, Srikanth & Zeid, Abe & Kamarthi, Sagar V., 2011. "Pricing decisions in a multi-criteria setting for product recovery facilities," Omega, Elsevier, vol. 39(2), pages 186-193, April.
    3. Simic, Vladimir & Dimitrijevic, Branka, 2012. "Production planning for vehicle recycling factories in the EU legislative and global business environments," Resources, Conservation & Recycling, Elsevier, vol. 60(C), pages 78-88.
    4. Kongar, Elif & Gupta, Surendra M., 2006. "Disassembly to order system under uncertainty," Omega, Elsevier, vol. 34(6), pages 550-561, December.
    5. Komly, Claude-Emma & Azzaro-Pantel, Catherine & Hubert, Antoine & Pibouleau, Luc & Archambault, Valérie, 2012. "Multiobjective waste management optimization strategy coupling life cycle assessment and genetic algorithms: Application to PET bottles," Resources, Conservation & Recycling, Elsevier, vol. 69(C), pages 66-81.
    6. Ayvaz, Berk & Bolat, Bersam & Aydın, Nezir, 2015. "Stochastic reverse logistics network design for waste of electrical and electronic equipment," Resources, Conservation & Recycling, Elsevier, vol. 104(PB), pages 391-404.
    7. Franke, C. & Basdere, B. & Ciupek, M. & Seliger, S., 2006. "Remanufacturing of mobile phones--capacity, program and facility adaptation planning," Omega, Elsevier, vol. 34(6), pages 562-570, December.
    8. Shi, Xiaoran & Thanos, Aristotelis E. & Celik, Nurcin, 2014. "Multi-objective agent-based modeling of single-stream recycling programs," Resources, Conservation & Recycling, Elsevier, vol. 92(C), pages 190-205.
    9. Jihee Han & KwangSup Shin, 2016. "Evaluation mechanism for structural robustness of supply chain considering disruption propagation," International Journal of Production Research, Taylor & Francis Journals, vol. 54(1), pages 135-151, January.
    10. Ramos, Tânia Rodrigues Pereira & Gomes, Maria Isabel & Barbosa-Póvoa, Ana Paula, 2014. "Planning a sustainable reverse logistics system: Balancing costs with environmental and social concerns," Omega, Elsevier, vol. 48(C), pages 60-74.
    11. Hara, Takuya & Shima, Hirokazu & Yoshida, Yoshikuni & Matsuhashi, Ryuji, 2007. "Model analysis of an inter-industrial and inter-regional waste recycling system in Japan," Energy, Elsevier, vol. 32(4), pages 609-618.
    12. Francas, David & Minner, Stefan, 2009. "Manufacturing network configuration in supply chains with product recovery," Omega, Elsevier, vol. 37(4), pages 757-769, August.
    13. Williams, J.A.S. & Wongweragiat, S. & Qu, X. & McGlinch, J.B. & Bonawi-tan, W. & Choi, J.K. & Schiff, J., 2007. "An automotive bulk recycling planning model," European Journal of Operational Research, Elsevier, vol. 177(2), pages 969-981, March.
    14. Zhou, Xiaoguang & Zhou, Yanhui, 2015. "Designing a multi-echelon reverse logistics operation and network: A case study of office paper in Beijing," Resources, Conservation & Recycling, Elsevier, vol. 100(C), pages 58-69.
    15. Simic, Vladimir & Dimitrijevic, Branka, 2013. "Risk explicit interval linear programming model for long-term planning of vehicle recycling in the EU legislative context under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 197-210.
    16. Kilic, Huseyin Selcuk & Cebeci, Ufuk & Ayhan, Mustafa Batuhan, 2015. "Reverse logistics system design for the waste of electrical and electronic equipment (WEEE) in Turkey," Resources, Conservation & Recycling, Elsevier, vol. 95(C), pages 120-132.
    17. Jun Nakatani & Masahiko Hirao, 2011. "Multicriteria Design of Plastic Recycling Based on Quality Information and Environmental Impacts," Journal of Industrial Ecology, Yale University, vol. 15(2), pages 228-244, April.
    18. Simic, Vladimir, 2016. "End-of-life vehicles allocation management under multiple uncertainties: An interval-parameter two-stage stochastic full-infinite programming approach," Resources, Conservation & Recycling, Elsevier, vol. 114(C), pages 1-17.
    19. Ameli, Mariam & Mansour, Saeed & Ahmadi-Javid, Amir, 2016. "A multi-objective model for selecting design alternatives and end-of-life options under uncertainty: A sustainable approach," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 123-136.
    20. Simic, Vladimir, 2015. "A two-stage interval-stochastic programming model for planning end-of-life vehicles allocation under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 98(C), pages 19-29.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simic, Vladimir, 2015. "A two-stage interval-stochastic programming model for planning end-of-life vehicles allocation under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 98(C), pages 19-29.
    2. Dinler, Esra & Güngör, Zülal, 2017. "Planning decisions for recycling products containing hazardous and explosive substances: A fuzzy multi-objective model," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 93-101.
    3. Simic, Vladimir, 2016. "End-of-life vehicles allocation management under multiple uncertainties: An interval-parameter two-stage stochastic full-infinite programming approach," Resources, Conservation & Recycling, Elsevier, vol. 114(C), pages 1-17.
    4. de Oliveira Neto, Geraldo Cardoso & de Jesus Cardoso Correia, Auro & Schroeder, Adriano Michelotti, 2017. "Economic and environmental assessment of recycling and reuse of electronic waste: Multiple case studies in Brazil and Switzerland," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 42-55.
    5. Li, Kate J. & Xu, Susan H., 2015. "The comparison between trade-in and leasing of a product with technology innovations," Omega, Elsevier, vol. 54(C), pages 134-146.
    6. Ayvaz, Berk & Bolat, Bersam & Aydın, Nezir, 2015. "Stochastic reverse logistics network design for waste of electrical and electronic equipment," Resources, Conservation & Recycling, Elsevier, vol. 104(PB), pages 391-404.
    7. Meng, Kai & Cao, Ying & Peng, Xianghui & Prybutok, Victor & Gupta, Varun, 2020. "Demand-dependent recovery decision-making of a batch of products for sustainability," International Journal of Production Economics, Elsevier, vol. 224(C).
    8. Chunlin Xin & Jie Wang & Ziping Wang & Chia-Huei Wu & Muhammad Nawaz & Sang-Bing Tsai, 2022. "Reverse logistics research of municipal hazardous waste: a literature review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1495-1531, February.
    9. Jia Mao & Jinyuan Cheng & Xiangyu Li & Honggang Zhao & Dexin Yu, 2023. "Simulation of Low Carbon Layout Optimization of Disassembly Line Based on SLP Method," Sustainability, MDPI, vol. 15(6), pages 1-26, March.
    10. Wu, Cheng-Han, 2013. "OEM product design in a price competition with remanufactured product," Omega, Elsevier, vol. 41(2), pages 287-298.
    11. Georgiadis, Patroklos & Athanasiou, Efstratios, 2013. "Flexible long-term capacity planning in closed-loop supply chains with remanufacturing," European Journal of Operational Research, Elsevier, vol. 225(1), pages 44-58.
    12. Simic, Vladimir & Dimitrijevic, Branka, 2013. "Risk explicit interval linear programming model for long-term planning of vehicle recycling in the EU legislative context under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 197-210.
    13. Gan, Shu San & Pujawan, I. Nyoman & Suparno, & Widodo, Basuki, 2015. "Pricing decision model for new and remanufactured short-life cycle products with time-dependent demand," Operations Research Perspectives, Elsevier, vol. 2(C), pages 1-12.
    14. Agrawal, Saurabh & Singh, Rajesh K. & Murtaza, Qasim, 2015. "A literature review and perspectives in reverse logistics," Resources, Conservation & Recycling, Elsevier, vol. 97(C), pages 76-92.
    15. Shubham Kumar Singh & Anand Chauhan & Biswajit Sarkar, 2022. "Supply Chain Management of E-Waste for End-of-Life Electronic Products with Reverse Logistics," Mathematics, MDPI, vol. 11(1), pages 1-14, December.
    16. Gazi Murat Duman & Elif Kongar, 2023. "ESG Modeling and Prediction Uncertainty of Electronic Waste," Sustainability, MDPI, vol. 15(14), pages 1-20, July.
    17. Tian, Xiaoyu & Zhang, Zhi-Hai, 2019. "Capacitated disassembly scheduling and pricing of returned products with price-dependent yield," Omega, Elsevier, vol. 84(C), pages 160-174.
    18. Huihui Liu & Xiaohang Yue & Hui Ding & G. Keong Leong, 2017. "Optimal Remanufacturing Certification Contracts in the Electrical and Electronic Industry," Sustainability, MDPI, vol. 9(4), pages 1-17, March.
    19. Matthias Klumpp & Dominic Loske, 2021. "Sustainability and Resilience Revisited: Impact of Information Technology Disruptions on Empirical Retail Logistics Efficiency," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    20. Erzurumlu, S. Sinan, 2013. "The compatibility of durable goods with contingent generic consumables," Omega, Elsevier, vol. 41(3), pages 574-585.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:116:y:2017:i:c:p:53-60. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.