IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v245y2022ics0925527322000068.html
   My bibliography  Save this article

Digital transformation in project-based manufacturing: Developing the ISA-95 model for vertical integration

Author

Listed:
  • Apilioğulları, Lütfi

Abstract

The Smart Factory is the intelligent management of all business operations that aims to produce innovative products in the most efficient and faster way through the cyber-physical system (CPS). CPS integrates the cyber (IT) and the physical world (OT) through the hierarchical layers of ISA-95 model and forms the backbone of Industry 4.0. The CPS plays a crucial role in transforming data from interconnected systems, and it is a prerequisite for the entire system to be able to interact. The ISA-95 model consists of components that can be used to determine how the interaction between domains vertically within the facility. However, the current ISA-95 Model does not include all the components that need to be integrated in vertical integration of all domains. The product domain is one of them. All IT and OT components need to be represented in the ISA-95 layers to achieve an ideal CPS structure. In this study, all components needed to achieve the ideal CPS structure have been identified in an expanded ISA-95 Model for project-based manufacturers. An extended ISA-95 model is proposed so that each manufacturing industry can use it in the digital transformation process by adding a product domain and connectivity layer to the Model. The Model was tested and confirmed, by conducting a case study which was based on implementing the vertical integration on it. This model helps businesses to develop more effective digital transformation strategies by defining where they should focus on or from where they should start the digital transformation processes.

Suggested Citation

  • Apilioğulları, Lütfi, 2022. "Digital transformation in project-based manufacturing: Developing the ISA-95 model for vertical integration," International Journal of Production Economics, Elsevier, vol. 245(C).
  • Handle: RePEc:eee:proeco:v:245:y:2022:i:c:s0925527322000068
    DOI: 10.1016/j.ijpe.2022.108413
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527322000068
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2022.108413?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Judit Nagy & Judit Oláh & Edina Erdei & Domicián Máté & József Popp, 2018. "The Role and Impact of Industry 4.0 and the Internet of Things on the Business Strategy of the Value Chain—The Case of Hungary," Sustainability, MDPI, vol. 10(10), pages 1-25, September.
    2. Frank, Alejandro Germán & Dalenogare, Lucas Santos & Ayala, Néstor Fabián, 2019. "Industry 4.0 technologies: Implementation patterns in manufacturing companies," International Journal of Production Economics, Elsevier, vol. 210(C), pages 15-26.
    3. Yusuf, Y. Y. & Gunasekaran, A. & Adeleye, E. O. & Sivayoganathan, K., 2004. "Agile supply chain capabilities: Determinants of competitive objectives," European Journal of Operational Research, Elsevier, vol. 159(2), pages 379-392, December.
    4. Rymaszewska, Anna & Helo, Petri & Gunasekaran, Angappa, 2017. "IoT powered servitization of manufacturing – an exploratory case study," International Journal of Production Economics, Elsevier, vol. 192(C), pages 92-105.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Antonio Paula Pinheiro & Daniel Jugend & Ana Beatriz Lopes de Sousa Jabbour & Charbel Jose Chiappetta Jabbour & Hengky Latan, 2022. "Circular economy‐based new products and company performance: The role of stakeholders and Industry 4.0 technologies," Business Strategy and the Environment, Wiley Blackwell, vol. 31(1), pages 483-499, January.
    2. Vendrell-Herrero, Ferran & Bustinza, Oscar F. & Opazo-Basaez, Marco & Gomes, Emanuel, 2023. "Treble innovation firms: Antecedents, outcomes, and enhancing factors," International Journal of Production Economics, Elsevier, vol. 255(C).
    3. Gillani, Fatima & Chatha, Kamran Ali & Sadiq Jajja, Muhammad Shakeel & Farooq, Sami, 2020. "Implementation of digital manufacturing technologies: Antecedents and consequences," International Journal of Production Economics, Elsevier, vol. 229(C).
    4. Culot, Giovanna & Nassimbeni, Guido & Orzes, Guido & Sartor, Marco, 2020. "Behind the definition of Industry 4.0: Analysis and open questions," International Journal of Production Economics, Elsevier, vol. 226(C).
    5. Kahle, Júlia Hofmeister & Marcon, Érico & Ghezzi, Antonio & Frank, Alejandro G., 2020. "Smart Products value creation in SMEs innovation ecosystems," Technological Forecasting and Social Change, Elsevier, vol. 156(C).
    6. Kristoffersen, Eivind & Blomsma, Fenna & Mikalef, Patrick & Li, Jingyue, 2020. "The smart circular economy: A digital-enabled circular strategies framework for manufacturing companies," Journal of Business Research, Elsevier, vol. 120(C), pages 241-261.
    7. Frank, Alejandro G. & Mendes, Glauco H.S. & Ayala, Néstor F. & Ghezzi, Antonio, 2019. "Servitization and Industry 4.0 convergence in the digital transformation of product firms: A business model innovation perspective," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 341-351.
    8. Culot, Giovanna & Orzes, Guido & Sartor, Marco & Nassimbeni, Guido, 2020. "The future of manufacturing: A Delphi-based scenario analysis on Industry 4.0," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    9. Münch, Christopher & Marx, Emanuel & Benz, Lukas & Hartmann, Evi & Matzner, Martin, 2022. "Capabilities of digital servitization: Evidence from the socio-technical systems theory," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    10. Sujan Piya & Ahm Shamsuzzoha & Mohammad Khadem & Nasr Al-Hinai, 2020. "Identification of Critical Factors and Their Interrelationships to Design Agile Supply Chain: Special Focus to Oil and Gas Industries," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 21(3), pages 263-281, September.
    11. Ogulin, R. & Selen, W. & Ashayeri, J., 2010. "Determinants of Informal Coordination in Networked Supply Chains," Discussion Paper 2010-133, Tilburg University, Center for Economic Research.
    12. Tortorella, Guilherme Luz & Narayanamurthy, Gopalakrishnan & Thurer, Matthias, 2021. "Identifying pathways to a high-performing lean automation implementation: An empirical study in the manufacturing industry," International Journal of Production Economics, Elsevier, vol. 231(C).
    13. Monideepa Tarafdar & Sufian Qrunfleh, 2017. "Agile supply chain strategy and supply chain performance: complementary roles of supply chain practices and information systems capability for agility," International Journal of Production Research, Taylor & Francis Journals, vol. 55(4), pages 925-938, February.
    14. Baik, Kibok & Kim, Kyoung Yong & Patel, Pankaj C., 2019. "The internal ecosystem of high performance work system and employee service-providing capability: A contingency approach for servitizing firms," Journal of Business Research, Elsevier, vol. 104(C), pages 402-410.
    15. Andrea Katona & Zoltán Birkner & Erzsébet Péter, 2023. "Examining Digital Transformation Trends in Austrian and Hungarian Companies," Sustainability, MDPI, vol. 15(15), pages 1-22, August.
    16. Lee, Chien-Chiang & Qin, Shuai & Li, Yaya, 2022. "Does industrial robot application promote green technology innovation in the manufacturing industry?," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    17. Videsh Desingh & Baskaran R, 2022. "Internet of Things adoption barriers in the Indian healthcare supply chain: An ISM‐fuzzy MICMAC approach," International Journal of Health Planning and Management, Wiley Blackwell, vol. 37(1), pages 318-351, January.
    18. Muhammad Irfan & Mingzheng Wang & Naeem Akhtar, 2019. "Impact of IT capabilities on supply chain capabilities and organizational agility: a dynamic capability view," Operations Management Research, Springer, vol. 12(3), pages 113-128, December.
    19. Li, Ying & Dai, Jing & Cui, Li, 2020. "The impact of digital technologies on economic and environmental performance in the context of industry 4.0: A moderated mediation model," International Journal of Production Economics, Elsevier, vol. 229(C).
    20. Menti, Federica & Romero, David & Jacobsen, Peter, 2023. "A technology assessment and implementation model for evaluating socio-cultural and technical factors for the successful deployment of Logistics 4.0 technologies," Technological Forecasting and Social Change, Elsevier, vol. 190(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:245:y:2022:i:c:s0925527322000068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.