IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v235y2021ics0925527321000578.html
   My bibliography  Save this article

A fuzzy bi-level optimization model for multi-period post-disaster relief distribution in sustainable humanitarian supply chains

Author

Listed:
  • Cao, Cejun
  • Liu, Yang
  • Tang, Ou
  • Gao, Xuehong

Abstract

In the aftermath of large-scale natural disasters, supply shortage and inequitable distribution cause various losses, hindering humanitarian supply chains’ performance. The optimal decisions are difficult due to the complexity arising from the multi-period post-disaster consideration, uncertainty of supplies, hierarchal decision levels and conflicting objectives in sustainable humanitarian supply chains (SHSCs). This paper formulates the problem as a fuzzy tri-objective bi-level integer programming model to minimize the unmet demand rate, potential environmental risks, emergency costs on the upper level of decision hierarchy and maximize survivors’ perceived satisfaction on the lower level of decision hierarchy. A hybrid global criterion method is devised to incorporate a primal-dual algorithm, expected value and branch-and-bound approach in solving the model. A case study using data from the Wenchuan earthquake is presented to evaluate the proposed model. Study results indicate that the hybrid global criterion method guides an optimal strategy for such a complex problem within a reasonable computational time. More attention should be attached to the environmental and economic sustainability aspects in SHSCs after golden rescue stage. The proposed bi-level optimization model has the advantages of reducing the total unmet demand rate, total potential environmental risks and total emergency costs. If the decision-agents with higher authorities act as the leaders with dominant power in SHSCs, the optimal decisions, respectively taking hierarchical and horizontal relationships into account would result in equal performance.

Suggested Citation

  • Cao, Cejun & Liu, Yang & Tang, Ou & Gao, Xuehong, 2021. "A fuzzy bi-level optimization model for multi-period post-disaster relief distribution in sustainable humanitarian supply chains," International Journal of Production Economics, Elsevier, vol. 235(C).
  • Handle: RePEc:eee:proeco:v:235:y:2021:i:c:s0925527321000578
    DOI: 10.1016/j.ijpe.2021.108081
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527321000578
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2021.108081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Kai & Jiang, Yiping & Yuan, Yufei & Zhao, Lindu, 2015. "Modeling multiple humanitarian objectives in emergency response to large-scale disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 1-17.
    2. Absi, Nabil & Dauzère-Pérès, Stéphane & Kedad-Sidhoum, Safia & Penz, Bernard & Rapine, Christophe, 2016. "The single-item green lot-sizing problem with fixed carbon emissions," European Journal of Operational Research, Elsevier, vol. 248(3), pages 849-855.
    3. Shuanglin Li & Kok Lay Teo, 2019. "Post-disaster multi-period road network repair: work scheduling and relief logistics optimization," Annals of Operations Research, Springer, vol. 283(1), pages 1345-1385, December.
    4. Falasca, Mauro & Zobel, Christopher, 2012. "An optimization model for volunteer assignments in humanitarian organizations," Socio-Economic Planning Sciences, Elsevier, vol. 46(4), pages 250-260.
    5. Zhang, Bo & Li, Hui & Li, Shengguo & Peng, Jin, 2018. "Sustainable multi-depot emergency facilities location-routing problem with uncertain information," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 506-520.
    6. Jimenez, Mariano & Arenas, Mar & Bilbao, Amelia & Rodri'guez, M. Victoria, 2007. "Linear programming with fuzzy parameters: An interactive method resolution," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1599-1609, March.
    7. Rauchecker, Gerhard & Schryen, Guido, 2019. "An exact branch-and-price algorithm for scheduling rescue units during disaster response," European Journal of Operational Research, Elsevier, vol. 272(1), pages 352-363.
    8. Wenjun Ni & Jia Shu & Miao Song, 2018. "Location and Emergency Inventory Pre†Positioning for Disaster Response Operations: Min†Max Robust Model and a Case Study of Yushu Earthquake," Production and Operations Management, Production and Operations Management Society, vol. 27(1), pages 160-183, January.
    9. Huang, Michael & Smilowitz, Karen & Balcik, Burcu, 2012. "Models for relief routing: Equity, efficiency and efficacy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 2-18.
    10. G Barbarosoǧlu & Y Arda, 2004. "A two-stage stochastic programming framework for transportation planning in disaster response," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(1), pages 43-53, January.
    11. Gutjahr, Walter J. & Nolz, Pamela C., 2016. "Multicriteria optimization in humanitarian aid," European Journal of Operational Research, Elsevier, vol. 252(2), pages 351-366.
    12. Jerome Bracken & James T. McGill, 1973. "Mathematical Programs with Optimization Problems in the Constraints," Operations Research, INFORMS, vol. 21(1), pages 37-44, February.
    13. Lin, Yen-Hung & Batta, Rajan & Rogerson, Peter A. & Blatt, Alan & Flanigan, Marie, 2011. "A logistics model for emergency supply of critical items in the aftermath of a disaster," Socio-Economic Planning Sciences, Elsevier, vol. 45(4), pages 132-145, December.
    14. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    15. Gutjahr, Walter J. & Dzubur, Nada, 2016. "Bi-objective bilevel optimization of distribution center locations considering user equilibria," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 85(C), pages 1-22.
    16. L N Van Wassenhove, 2006. "Humanitarian aid logistics: supply chain management in high gear," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(5), pages 475-489, May.
    17. Rameshwar Dubey & Angappa Gunasekaran & Thanos Papadopoulos, 2019. "Disaster relief operations: past, present and future," Annals of Operations Research, Springer, vol. 283(1), pages 1-8, December.
    18. Cantillo, Victor & Serrano, Iván & Macea, Luis F. & Holguín-Veras, José, 2018. "Discrete choice approach for assessing deprivation cost in humanitarian relief operations," Socio-Economic Planning Sciences, Elsevier, vol. 63(C), pages 33-46.
    19. Sheu, Jiuh-Biing, 2007. "An emergency logistics distribution approach for quick response to urgent relief demand in disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(6), pages 687-709, November.
    20. Zhou, Yawen & Liu, Jing & Zhang, Yutong & Gan, Xiaohui, 2017. "A multi-objective evolutionary algorithm for multi-period dynamic emergency resource scheduling problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 99(C), pages 77-95.
    21. Wex, Felix & Schryen, Guido & Feuerriegel, Stefan & Neumann, Dirk, 2014. "Emergency response in natural disaster management: Allocation and scheduling of rescue units," European Journal of Operational Research, Elsevier, vol. 235(3), pages 697-708.
    22. Moreno, Alfredo & Alem, Douglas & Ferreira, Deisemara & Clark, Alistair, 2018. "An effective two-stage stochastic multi-trip location-transportation model with social concerns in relief supply chains," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1050-1071.
    23. Jaehn, Florian, 2016. "Sustainable Operations," European Journal of Operational Research, Elsevier, vol. 253(2), pages 243-264.
    24. Wenjun Ni & Jia Shu, 2015. "Trade-off between service time and carbon emissions for safety stock placement in multi-echelon supply chains," International Journal of Production Research, Taylor & Francis Journals, vol. 53(22), pages 6701-6718, November.
    25. Cejun Cao & Congdong Li & Qin Yang & Fanshun Zhang, 2017. "Multi-Objective Optimization Model of Emergency Organization Allocation for Sustainable Disaster Supply Chain," Sustainability, MDPI, vol. 9(11), pages 1-22, November.
    26. Muhammad Salman Habib & Young Hae Lee & Muhammad Saad Memon, 2016. "Mathematical Models in Humanitarian Supply Chain Management: A Systematic Literature Review," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-20, February.
    27. Laura Laguna-Salvadó & Matthieu Lauras & Uche Okongwu & Tina Comes, 2019. "A multicriteria Master Planning DSS for a sustainable humanitarian supply chain," Annals of Operations Research, Springer, vol. 283(1), pages 1303-1343, December.
    28. Galindo, Gina & Batta, Rajan, 2013. "Review of recent developments in OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 230(2), pages 201-211.
    29. Lanying Du & Ling Qian, 2016. "The government’s mobilization strategy following a disaster in the Chinese context: an evolutionary game theory analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1411-1424, February.
    30. Hsueh, Che-Fu, 2015. "A bilevel programming model for corporate social responsibility collaboration in sustainable supply chain management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 73(C), pages 84-95.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiaxin Geng & Hanping Hou & Shaoqing Geng, 2021. "Optimization of Warehouse Location and Supplies Allocation for Emergency Rescue under Joint Government–Enterprise Cooperation Considering Disaster Victims’ Distress Perception," Sustainability, MDPI, vol. 13(19), pages 1-14, September.
    2. Shivam Gupta & Sachin Modgil & Ajay Kumar & Uthayasankar Sivarajah & Zahir Irani, 2022. "Artificial intelligence and cloud-based Collaborative Platforms for Managing Disaster, extreme weather and emergency operations," Post-Print hal-04325638, HAL.
    3. Diaz, Rafael & Behr, Joshua G. & Acero, Beatriz, 2022. "Coastal housing recovery in a postdisaster environment: A supply chain perspective," International Journal of Production Economics, Elsevier, vol. 247(C).
    4. Faraz Salehi & S. Mohammad J. Mirzapour Al-E-Hashem & S. Mohammad Moattar Husseini & S. Hassan Ghodsypour, 2023. "A bi-level multi-follower optimization model for R&D project portfolio: an application to a pharmaceutical holding company," Annals of Operations Research, Springer, vol. 323(1), pages 331-360, April.
    5. Min Zeng & Chuanzhou Dian & Yaoyao Wei, 2022. "Risk Assessment of Insider Threats Based on IHFACS-BN," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
    6. Rabin K. Jana & Dinesh K. Sharma & Peeyush Mehta, 2022. "A probabilistic fuzzy goal programming model for managing the supply of emergency relief materials," Annals of Operations Research, Springer, vol. 319(1), pages 149-172, December.
    7. Jie Zhen & Cejun Cao & Hanguang Qiu & Zongxiao Xie, 2021. "Impact of organizational inertia on organizational agility: the role of IT ambidexterity," Information Technology and Management, Springer, vol. 22(1), pages 53-65, March.
    8. Gupta, Shivam & Modgil, Sachin & Kumar, Ajay & Sivarajah, Uthayasankar & Irani, Zahir, 2022. "Artificial intelligence and cloud-based Collaborative Platforms for Managing Disaster, extreme weather and emergency operations," International Journal of Production Economics, Elsevier, vol. 254(C).
    9. Vosooghi, Zeinab & Mirzapour Al-e-hashem, S.M.J. & Lahijanian, Behshad, 2022. "Scenario-based redesigning of a relief supply-chain network by considering humanitarian constraints, triage, and volunteers’ help," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    10. Fanshun Zhang & Congdong Li & Cejun Cao & Zhiwei Zhang, 2022. "Random or preferential? Evolutionary mechanism of user behavior in co-creation community," Computational and Mathematical Organization Theory, Springer, vol. 28(2), pages 141-177, June.
    11. Meng, Qingchun & Kao, Zhiping & Guo, Ying & Bao, Chunbing, 2023. "An emergency supplies procurement strategy based on a bidirectional option contract," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    12. Yiping Huang & Qin Yang & Jinfeng Liu & Xiao Li & Jie Zhang, 2021. "Sustainable Scheduling of the Production in the Aluminum Furnace Hot Rolling Section with Uncertain Demand," Sustainability, MDPI, vol. 13(14), pages 1-23, July.
    13. Fatemeh Faghih-Mohammadi & Mohammad Mahdi Nasiri & Dinçer Konur, 2023. "Cross-dock facility for disaster relief operations," Annals of Operations Research, Springer, vol. 322(1), pages 497-538, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    2. Xuehong Gao, 2022. "A bi-level stochastic optimization model for multi-commodity rebalancing under uncertainty in disaster response," Annals of Operations Research, Springer, vol. 319(1), pages 115-148, December.
    3. Cejun Cao & Congdong Li & Qin Yang & Fanshun Zhang, 2017. "Multi-Objective Optimization Model of Emergency Organization Allocation for Sustainable Disaster Supply Chain," Sustainability, MDPI, vol. 9(11), pages 1-22, November.
    4. Rodolfo Modrigais Strauss Nunes & Susana Carla Farias Pereira, 2022. "Intellectual structure and trends in the humanitarian operations field," Annals of Operations Research, Springer, vol. 319(1), pages 1099-1157, December.
    5. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    6. Li Zhu & Yeming Gong & Yishui Xu & Jun Gu, 2019. "Emergency relief routing models for injured victims considering equity and priority," Annals of Operations Research, Springer, vol. 283(1), pages 1573-1606, December.
    7. Farahani, Reza Zanjirani & Lotfi, M.M. & Baghaian, Atefe & Ruiz, Rubén & Rezapour, Shabnam, 2020. "Mass casualty management in disaster scene: A systematic review of OR&MS research in humanitarian operations," European Journal of Operational Research, Elsevier, vol. 287(3), pages 787-819.
    8. Li Zhu & Yeming Gong & Yishui Xu & Jun Gu, 2019. "Emergency Relief Routing Models for Injured Victims Considering Equity and Priority," Post-Print hal-02879681, HAL.
    9. Li, Xiaoping & Batta, Rajan & Kwon, Changhyun, 2017. "Effective and equitable supply of gasoline to impacted areas in the aftermath of a natural disaster," Socio-Economic Planning Sciences, Elsevier, vol. 57(C), pages 25-34.
    10. Rivera-Royero, Daniel & Galindo, Gina & Yie-Pinedo, Ruben, 2020. "Planning the delivery of relief supplies upon the occurrence of a natural disaster while considering the assembly process of the relief kits," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    11. Renata Turkeš & Daniel Palhazi Cuervo & Kenneth Sörensen, 2019. "Pre-positioning of emergency supplies: does putting a price on human life help to save lives?," Annals of Operations Research, Springer, vol. 283(1), pages 865-895, December.
    12. Hossein Baharmand & Diego Vega & Matthieu Lauras & Tina Comes, 2022. "A methodology for developing evidence-based optimization models in humanitarian logistics," Annals of Operations Research, Springer, vol. 319(1), pages 1197-1229, December.
    13. Maliheh Khorsi & Seyed Kamal Chaharsooghi & Ali Husseinzadeh Kashan & Ali Bozorgi-Amiri, 2022. "Solving the humanitarian multi-trip cumulative capacitated routing problem via a grouping metaheuristic algorithm," Annals of Operations Research, Springer, vol. 319(1), pages 173-210, December.
    14. Yiping Jiang & Yufei Yuan, 2019. "Emergency Logistics in a Large-Scale Disaster Context: Achievements and Challenges," IJERPH, MDPI, vol. 16(5), pages 1-23, March.
    15. Zhang, Guowei & Zhu, Ning & Ma, Shoufeng & Xia, Jun, 2021. "Humanitarian relief network assessment using collaborative truck-and-drone system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    16. Laura Laguna-Salvadó & Matthieu Lauras & Uche Okongwu & Tina Comes, 2019. "A multicriteria Master Planning DSS for a sustainable humanitarian supply chain," Annals of Operations Research, Springer, vol. 283(1), pages 1303-1343, December.
    17. Sabbaghtorkan, Monir & Batta, Rajan & He, Qing, 2020. "Prepositioning of assets and supplies in disaster operations management: Review and research gap identification," European Journal of Operational Research, Elsevier, vol. 284(1), pages 1-19.
    18. Baharmand, Hossein & Comes, Tina & Lauras, Matthieu, 2019. "Bi-objective multi-layer location–allocation model for the immediate aftermath of sudden-onset disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 86-110.
    19. José M. Ferrer & M. Teresa Ortuño & Gregorio Tirado, 2020. "A New Ant Colony-Based Methodology for Disaster Relief," Mathematics, MDPI, vol. 8(4), pages 1-23, April.
    20. Kundu, Tanmoy & Sheu, Jiuh-Biing & Kuo, Hsin-Tsz, 2022. "Emergency logistics management—Review and propositions for future research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:235:y:2021:i:c:s0925527321000578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.