IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v140y2012i2p737-748.html
   My bibliography  Save this article

Development of a stochastic optimisation tool for solving the multiple container packing problems

Author

Listed:
  • Thapatsuwan, Peeraya
  • Pongcharoen, Pupong
  • Hicks, Chris
  • Chainate, Warattapop

Abstract

Marine logistics has become increasingly important as the amount of global trade has increased. Products are usually packed in various sizes of boxes, which are then arranged into containers before shipping. Shipping companies aim to optimise the use of space when packing heterogeneous boxes into containers. The container packing problem (CPP) aims to optimise the packing of a number of rectangular boxes into a set of containers. The problems may be classified as being homogeneous (identical boxes), weakly heterogeneous (a few different sizes) or strongly heterogeneous (many different boxes). The CPP is categorised as an NP hard problem, which means that the amount of computation required to find solutions increases exponentially with problem size.

Suggested Citation

  • Thapatsuwan, Peeraya & Pongcharoen, Pupong & Hicks, Chris & Chainate, Warattapop, 2012. "Development of a stochastic optimisation tool for solving the multiple container packing problems," International Journal of Production Economics, Elsevier, vol. 140(2), pages 737-748.
  • Handle: RePEc:eee:proeco:v:140:y:2012:i:2:p:737-748
    DOI: 10.1016/j.ijpe.2011.05.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527311002180
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2011.05.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    2. Michel Gendreau & Manuel Iori & Gilbert Laporte & Silvano Martello, 2006. "A Tabu Search Algorithm for a Routing and Container Loading Problem," Transportation Science, INFORMS, vol. 40(3), pages 342-350, August.
    3. Pisinger, David, 2002. "Heuristics for the container loading problem," European Journal of Operational Research, Elsevier, vol. 141(2), pages 382-392, September.
    4. Stephanie Forrest & Alan S. Perelson & Lawrence Allen & Rajesh Cherukuri, 1994. "Self-Nonself Discrimination in a Computer," Working Papers 94-06-038, Santa Fe Institute.
    5. Bischoff, Eberhard E. & Marriott, Michael D., 1990. "A comparative evaluation of heuristics for container loading," European Journal of Operational Research, Elsevier, vol. 44(2), pages 267-276, January.
    6. Oliveira, Jose Fernando & Wascher, Gerhard, 2007. "Cutting and Packing," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1106-1108, December.
    7. Chen, C. S. & Lee, S. M. & Shen, Q. S., 1995. "An analytical model for the container loading problem," European Journal of Operational Research, Elsevier, vol. 80(1), pages 68-76, January.
    8. J. E. Beasley, 1985. "An Exact Two-Dimensional Non-Guillotine Cutting Tree Search Procedure," Operations Research, INFORMS, vol. 33(1), pages 49-64, February.
    9. Davies, A. Paul & Bischoff, Eberhard E., 1999. "Weight distribution considerations in container loading," European Journal of Operational Research, Elsevier, vol. 114(3), pages 509-527, May.
    10. Dyckhoff, Harald, 1990. "A typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 44(2), pages 145-159, January.
    11. P. Pongcharoen & D. J. Stewardson & C. Hicks & P. M. Braiden, 2001. "Applying designed experiments to optimize the performance of genetic algorithms used for scheduling complex products in the capital goods industry," Journal of Applied Statistics, Taylor & Francis Journals, vol. 28(3-4), pages 441-455.
    12. Bortfeldt, Andreas & Gehring, Hermann, 2001. "A hybrid genetic algorithm for the container loading problem," European Journal of Operational Research, Elsevier, vol. 131(1), pages 143-161, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Weimiao & Deng, Tianhu & Li, Jianbin, 2019. "Product packing and stacking under uncertainty: A robust approach," European Journal of Operational Research, Elsevier, vol. 277(3), pages 903-917.
    2. Vélez-Gallego, Mario C. & Teran-Somohano, Alejandro & Smith, Alice E., 2020. "Minimizing late deliveries in a truck loading problem," European Journal of Operational Research, Elsevier, vol. 286(3), pages 919-928.
    3. Thepphakorn, Thatchai & Pongcharoen, Pupong & Hicks, Chris, 2014. "An ant colony based timetabling tool," International Journal of Production Economics, Elsevier, vol. 149(C), pages 131-144.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bortfeldt, Andreas & Wäscher, Gerhard, 2013. "Constraints in container loading – A state-of-the-art review," European Journal of Operational Research, Elsevier, vol. 229(1), pages 1-20.
    2. Iori, Manuel & de Lima, Vinícius L. & Martello, Silvano & Miyazawa, Flávio K. & Monaci, Michele, 2021. "Exact solution techniques for two-dimensional cutting and packing," European Journal of Operational Research, Elsevier, vol. 289(2), pages 399-415.
    3. Huang, Wenqi & He, Kun, 2009. "A caving degree approach for the single container loading problem," European Journal of Operational Research, Elsevier, vol. 196(1), pages 93-101, July.
    4. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    5. Bonet Filella, Guillem & Trivella, Alessio & Corman, Francesco, 2023. "Modeling soft unloading constraints in the multi-drop container loading problem," European Journal of Operational Research, Elsevier, vol. 308(1), pages 336-352.
    6. Lim, Andrew & Ma, Hong & Qiu, Chaoyang & Zhu, Wenbin, 2013. "The single container loading problem with axle weight constraints," International Journal of Production Economics, Elsevier, vol. 144(1), pages 358-369.
    7. Bischoff, E.E., 2006. "Three-dimensional packing of items with limited load bearing strength," European Journal of Operational Research, Elsevier, vol. 168(3), pages 952-966, February.
    8. Carlos A. Vega-Mejía & Jairo R. Montoya-Torres & Sardar M. N. Islam, 2019. "Consideration of triple bottom line objectives for sustainability in the optimization of vehicle routing and loading operations: a systematic literature review," Annals of Operations Research, Springer, vol. 273(1), pages 311-375, February.
    9. Gajda, Mikele & Trivella, Alessio & Mansini, Renata & Pisinger, David, 2022. "An optimization approach for a complex real-life container loading problem," Omega, Elsevier, vol. 107(C).
    10. Wang, Ning & Lim, Andrew & Zhu, Wenbin, 2013. "A multi-round partial beam search approach for the single container loading problem with shipment priority," International Journal of Production Economics, Elsevier, vol. 145(2), pages 531-540.
    11. I. Gimenez-Palacios & M. T. Alonso & R. Alvarez-Valdes & F. Parreño, 2021. "Logistic constraints in container loading problems: the impact of complete shipment conditions," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 177-203, April.
    12. F. Parreño & R. Alvarez-Valdes & J. M. Tamarit & J. F. Oliveira, 2008. "A Maximal-Space Algorithm for the Container Loading Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 412-422, August.
    13. Sheng, Liu & Hongxia, Zhao & Xisong, Dong & Changjian, Cheng, 2016. "A heuristic algorithm for container loading of pallets with infill boxes," European Journal of Operational Research, Elsevier, vol. 252(3), pages 728-736.
    14. Fuellerer, Guenther & Doerner, Karl F. & Hartl, Richard F. & Iori, Manuel, 2010. "Metaheuristics for vehicle routing problems with three-dimensional loading constraints," European Journal of Operational Research, Elsevier, vol. 201(3), pages 751-759, March.
    15. Galrão Ramos, A. & Oliveira, José F. & Gonçalves, José F. & Lopes, Manuel P., 2016. "A container loading algorithm with static mechanical equilibrium stability constraints," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 565-581.
    16. T N Wong & P S Chow & D Sculli, 2006. "A heuristic for sea-freight container selection, cargo allocation and cargo orientation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(12), pages 1452-1463, December.
    17. Ramos, António G. & Silva, Elsa & Oliveira, José F., 2018. "A new load balance methodology for container loading problem in road transportation," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1140-1152.
    18. Gzara, Fatma & Elhedhli, Samir & Yildiz, Burak C., 2020. "The Pallet Loading Problem: Three-dimensional bin packing with practical constraints," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1062-1074.
    19. Ambrosino, Daniela & Sciomachen, Anna & Tanfani, Elena, 2004. "Stowing a containership: the master bay plan problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(2), pages 81-99, February.
    20. Zhu, Wenbin & Lim, Andrew, 2012. "A new iterative-doubling Greedy–Lookahead algorithm for the single container loading problem," European Journal of Operational Research, Elsevier, vol. 222(3), pages 408-417.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:140:y:2012:i:2:p:737-748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.