IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v135y2012i1p190-198.html
   My bibliography  Save this article

A novel differential evolution algorithm for joint replenishment problem under interdependence and its application

Author

Listed:
  • Wang, Lin
  • He, Jing
  • Wu, Desheng
  • Zeng, Yu-Rong

Abstract

In this paper, we propose a new differential evolution (DE) algorithm for joint replenishment of inventory using both direct grouping and indirect grouping which allows for the interdependence of minor ordering costs. Since solutions to the joint replenishment problem (JRP) can be represented by integer decision variables, this makes the JRP a good candidate for the DE algorithm. The results of testing randomly generated problems in contrastive numerical examples and two extended experiments show that the DE algorithm provides close to optimal results for some problems than the evolutionary algorithm (EA), which has been proved to be an efficient algorithm. Moreover, the DE algorithm is faster than the EA for most problems. We also conducted a case study and application results suggest that the proposed model is successful in decreasing total costs of maintenance materials inventories significantly in two power companies.

Suggested Citation

  • Wang, Lin & He, Jing & Wu, Desheng & Zeng, Yu-Rong, 2012. "A novel differential evolution algorithm for joint replenishment problem under interdependence and its application," International Journal of Production Economics, Elsevier, vol. 135(1), pages 190-198.
  • Handle: RePEc:eee:proeco:v:135:y:2012:i:1:p:190-198
    DOI: 10.1016/j.ijpe.2011.06.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527311002817
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2011.06.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robinson, Powell & Narayanan, Arunachalam & Sahin, Funda, 2009. "Coordinated deterministic dynamic demand lot-sizing problem: A review of models and algorithms," Omega, Elsevier, vol. 37(1), pages 3-15, February.
    2. Khouja, Moutaz & Goyal, Suresh, 2008. "A review of the joint replenishment problem literature: 1989-2005," European Journal of Operational Research, Elsevier, vol. 186(1), pages 1-16, April.
    3. Larsen, Christian, 2009. "The Q(s,S) control policy for the joint replenishment problem extended to the case of correlation among item-demands," International Journal of Production Economics, Elsevier, vol. 118(1), pages 292-297, March.
    4. Porras, Eric & Dekker, Rommert, 2006. "An efficient optimal solution method for the joint replenishment problem with minimum order quantities," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1595-1615, November.
    5. Lee, Loo Hay & Chew, Ek Peng, 2005. "A dynamic joint replenishment policy with auto-correlated demand," European Journal of Operational Research, Elsevier, vol. 165(3), pages 729-747, September.
    6. van Eijs, M. J. G. & Heuts, R. M. J. & Kleijnen, J. P. C., 1992. "Analysis and comparison of two strategies for multi-item inventory systems with joint replenishment costs," European Journal of Operational Research, Elsevier, vol. 59(3), pages 405-412, June.
    7. S. K. Goyal, 1973. "Determination of Economic Packaging Frequency for Items Jointly Replenished," Management Science, INFORMS, vol. 20(2), pages 232-235, October.
    8. Bergey, Paul K. & Ragsdale, Cliff, 2005. "Modified differential evolution: a greedy random strategy for genetic recombination," Omega, Elsevier, vol. 33(3), pages 255-265, June.
    9. Awi Federgruen & Joern Meissner & Michal Tzur, 2007. "Progressive Interval Heuristics for Multi-Item Capacitated Lot-Sizing Problems," Operations Research, INFORMS, vol. 55(3), pages 490-502, June.
    10. Al-Anzi, Fawaz S. & Allahverdi, Ali, 2007. "A self-adaptive differential evolution heuristic for two-stage assembly scheduling problem to minimize maximum lateness with setup times," European Journal of Operational Research, Elsevier, vol. 182(1), pages 80-94, October.
    11. Salman, Ayed & Engelbrecht, Andries P. & Omran, Mahamed G.H., 2007. "Empirical analysis of self-adaptive differential evolution," European Journal of Operational Research, Elsevier, vol. 183(2), pages 785-804, December.
    12. Wu, Desheng & Olson, David L., 2008. "Supply chain risk, simulation, and vendor selection," International Journal of Production Economics, Elsevier, vol. 114(2), pages 646-655, August.
    13. Nilsson, Andreas & Segerstedt, Anders & van der Sluis, Erik, 2007. "A new iterative heuristic to solve the joint replenishment problem using a spreadsheet technique," International Journal of Production Economics, Elsevier, vol. 108(1-2), pages 399-405, July.
    14. Narayanan, Arunachalam & Robinson, Powell, 2010. "Evaluation of joint replenishment lot-sizing procedures in rolling horizon planning systems," International Journal of Production Economics, Elsevier, vol. 127(1), pages 85-94, September.
    15. S. K. Goyal, 1974. "Determination of Optimum Packaging Frequency of Items Jointly Replenished," Management Science, INFORMS, vol. 21(4), pages 436-443, December.
    16. Olsen, Anne L., 2008. "Inventory replenishment with interdependent ordering costs: An evolutionary algorithm solution," International Journal of Production Economics, Elsevier, vol. 113(1), pages 359-369, May.
    17. Narayanan, Arunachalam & Robinson, Powell, 2010. "Efficient and effective heuristics for the coordinated capacitated lot-size problem," European Journal of Operational Research, Elsevier, vol. 203(3), pages 583-592, June.
    18. E P Robinson & A Narayanan & L-L Gao, 2007. "Effective heuristics for the dynamic demand joint replenishment problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(6), pages 808-815, June.
    19. Goyal, Suresh K. & Satir, Ahmet T., 1989. "Joint replenishment inventory control: Deterministic and stochastic models," European Journal of Operational Research, Elsevier, vol. 38(1), pages 2-13, January.
    20. R Y K Fung & X Ma, 2001. "A new method for joint replenishment problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(3), pages 358-362, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sina Shaffiee Haghshenas & Behrouz Pirouz & Sami Shaffiee Haghshenas & Behzad Pirouz & Patrizia Piro & Kyoung-Sae Na & Seo-Eun Cho & Zong Woo Geem, 2020. "Prioritizing and Analyzing the Role of Climate and Urban Parameters in the Confirmed Cases of COVID-19 Based on Artificial Intelligence Applications," IJERPH, MDPI, vol. 17(10), pages 1-21, May.
    2. Baller, Annelieke C. & Dabia, Said & Dullaert, Wout E.H. & Vigo, Daniele, 2019. "The Dynamic-Demand Joint Replenishment Problem with Approximated Transportation Costs," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1013-1033.
    3. Cui, Ligang & Deng, Jie & Liu, Rui & Xu, Dongyang & Zhang, Yajun & Xu, Maozeng, 2020. "A stochastic multi-item replenishment and delivery problem with lead-time reduction initiatives and the solving methodologies," Applied Mathematics and Computation, Elsevier, vol. 374(C).
    4. Saravanan Venkatachalam & Arunachalam Narayanan, 2016. "Efficient formulation and heuristics for multi-item single source ordering problem with transportation cost," International Journal of Production Research, Taylor & Francis Journals, vol. 54(14), pages 4087-4103, July.
    5. Zeng, Yu-Rong & Zeng, Yi & Choi, Beomjin & Wang, Lin, 2017. "Multifactor-influenced energy consumption forecasting using enhanced back-propagation neural network," Energy, Elsevier, vol. 127(C), pages 381-396.
    6. Ongkunaruk, P. & Wahab, M.I.M. & Chen, Y., 2016. "A genetic algorithm for a joint replenishment problem with resource and shipment constraints and defective items," International Journal of Production Economics, Elsevier, vol. 175(C), pages 142-152.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khouja, Moutaz & Goyal, Suresh, 2008. "A review of the joint replenishment problem literature: 1989-2005," European Journal of Operational Research, Elsevier, vol. 186(1), pages 1-16, April.
    2. Saravanan Venkatachalam & Arunachalam Narayanan, 2016. "Efficient formulation and heuristics for multi-item single source ordering problem with transportation cost," International Journal of Production Research, Taylor & Francis Journals, vol. 54(14), pages 4087-4103, July.
    3. Baller, Annelieke C. & Dabia, Said & Dullaert, Wout E.H. & Vigo, Daniele, 2019. "The Dynamic-Demand Joint Replenishment Problem with Approximated Transportation Costs," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1013-1033.
    4. Narayanan, Arunachalam & Robinson, Powell, 2010. "Evaluation of joint replenishment lot-sizing procedures in rolling horizon planning systems," International Journal of Production Economics, Elsevier, vol. 127(1), pages 85-94, September.
    5. Tamar Cohen-Hillel & Liron Yedidsion, 2018. "The Periodic Joint Replenishment Problem Is Strongly 𝒩𝒫-Hard," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1269-1289, November.
    6. Shiyu Liu & Ou Liu & Xiaoming Jiang, 2023. "An Efficient Algorithm for the Joint Replenishment Problem with Quantity Discounts, Minimum Order Quantity and Transport Capacity Constraints," Mathematics, MDPI, vol. 11(4), pages 1-18, February.
    7. Jen-Yen Lin & Ming-Jong Yao, 2020. "The joint replenishment problem with trade credits," Journal of Global Optimization, Springer, vol. 76(2), pages 347-382, February.
    8. Young Hyeon Yang & Jong Soo Kim, 2020. "An adaptive joint replenishment policy for items with non-stationary demands," Operational Research, Springer, vol. 20(3), pages 1665-1684, September.
    9. Ongkunaruk, P. & Wahab, M.I.M. & Chen, Y., 2016. "A genetic algorithm for a joint replenishment problem with resource and shipment constraints and defective items," International Journal of Production Economics, Elsevier, vol. 175(C), pages 142-152.
    10. Cui, Ligang & Deng, Jie & Liu, Rui & Xu, Dongyang & Zhang, Yajun & Xu, Maozeng, 2020. "A stochastic multi-item replenishment and delivery problem with lead-time reduction initiatives and the solving methodologies," Applied Mathematics and Computation, Elsevier, vol. 374(C).
    11. Hoque, M.A., 2006. "An optimal solution technique for the joint replenishment problem with storage and transport capacities and budget constraints," European Journal of Operational Research, Elsevier, vol. 175(2), pages 1033-1042, December.
    12. Muriel, Ana & Chugh, Tammana & Prokle, Michael, 2022. "Efficient algorithms for the joint replenishment problem with minimum order quantities," European Journal of Operational Research, Elsevier, vol. 300(1), pages 137-150.
    13. Ji Seong Noh & Jong Soo Kim & Biswajit Sarkar, 2019. "Stochastic joint replenishment problem with quantity discounts and minimum order constraints," Operational Research, Springer, vol. 19(1), pages 151-178, March.
    14. Chan, Chi Kin & Yuk-on Li, Leon & To Ng, Chi & Kin-sion Cheung, Bernard & Langevin, Andre, 2006. "Scheduling of multi-buyer joint replenishments," International Journal of Production Economics, Elsevier, vol. 102(1), pages 132-142, July.
    15. Francisco Silva & Lucia Gao, 2013. "A Joint Replenishment Inventory-Location Model," Networks and Spatial Economics, Springer, vol. 13(1), pages 107-122, March.
    16. Seyed Hamid Reza Pasandideh & Seyed Taghi Akhavan Niaki & Reza Abdollahi, 2020. "Modeling and solving a bi-objective joint replenishment-location problem under incremental discount: MOHSA and NSGA-II," Operational Research, Springer, vol. 20(4), pages 2365-2396, December.
    17. Nilsson, Andreas & Segerstedt, Anders & van der Sluis, Erik, 2007. "A new iterative heuristic to solve the joint replenishment problem using a spreadsheet technique," International Journal of Production Economics, Elsevier, vol. 108(1-2), pages 399-405, July.
    18. Pundoor, Guruprasad & Chen, Zhi-Long, 2009. "Joint cyclic production and delivery scheduling in a two-stage supply chain," International Journal of Production Economics, Elsevier, vol. 119(1), pages 55-74, May.
    19. Olsen, Anne L., 2008. "Inventory replenishment with interdependent ordering costs: An evolutionary algorithm solution," International Journal of Production Economics, Elsevier, vol. 113(1), pages 359-369, May.
    20. Bayindir, Z.P. & Birbil, S.I. & Frenk, J.B.G., 2006. "The joint replenishment problem with variable production costs," European Journal of Operational Research, Elsevier, vol. 175(1), pages 622-640, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:135:y:2012:i:1:p:190-198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.