IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v112y2008i2p532-547.html
   My bibliography  Save this article

On the value of location information to lot scheduling in complex manufacturing processes

Author

Listed:
  • Thiesse, Frédéric
  • Fleisch, Elgar

Abstract

This research is concerned with the practical use of real-time location systems (RTLSs) in complex manufacturing processes. Starting from the case example of an RFID-based RTLS implementation in a semiconductor fab, we investigate the value of RTLS information on the locations of physical objects in a production system to the problem of efficient job scheduling. For this purpose, we develop a simplified simulation model that captures the main characteristics of the real manufacturing process and propose a set of RTLS-enabled dispatching rules. Our results indicate that the use of RTLS technology provides the opportunity for new levels of process visibility and control in comparison to conventional material-tracking systems. The benefits that can be drawn from the technology include not only an overall acceleration of the existing process but also an additional efficiency gain through novel dispatching rules that take into account real-time information on the logistic processes on the shop floor.

Suggested Citation

  • Thiesse, Frédéric & Fleisch, Elgar, 2008. "On the value of location information to lot scheduling in complex manufacturing processes," International Journal of Production Economics, Elsevier, vol. 112(2), pages 532-547, April.
  • Handle: RePEc:eee:proeco:v:112:y:2008:i:2:p:532-547
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(07)00195-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nazzal, Dima & Mollaghasemi, Mansooreh & Anderson, Dave, 2006. "A simulation-based evaluation of the cost of cycle time reduction in Agere Systems wafer fabrication facility--a case study," International Journal of Production Economics, Elsevier, vol. 100(2), pages 300-313, April.
    2. R. W. Conway & W. L. Maxwell, 1962. "Network Dispatching by the Shortest-Operation Discipline," Operations Research, INFORMS, vol. 10(1), pages 51-73, February.
    3. Jain, A. S. & Meeran, S., 1999. "Deterministic job-shop scheduling: Past, present and future," European Journal of Operational Research, Elsevier, vol. 113(2), pages 390-434, March.
    4. Holthaus, Oliver & Rajendran, Chandrasekharan, 1997. "Efficient dispatching rules for scheduling in a job shop," International Journal of Production Economics, Elsevier, vol. 48(1), pages 87-105, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ngai, Eric W.T. & Cheung, Bernard K.S. & Lam, S.S. & Ng, C.T., 2014. "RFID value in aircraft parts supply chains: A case study," International Journal of Production Economics, Elsevier, vol. 147(PB), pages 330-339.
    2. Tang, Lin & Cao, Hui & Zheng, Li & Huang, Ningjian, 2015. "Value-driven uncertainty-aware data processing for an RFID-enabled mixed-model assembly line," International Journal of Production Economics, Elsevier, vol. 165(C), pages 273-281.
    3. Zhou, Wei & Piramuthu, Selwyn, 2012. "Manufacturing with item-level RFID information: From macro to micro quality control," International Journal of Production Economics, Elsevier, vol. 135(2), pages 929-938.
    4. Kelepouris, Thomas & McFarlane, Duncan, 2010. "Determining the value of asset location information systems in a manufacturing environment," International Journal of Production Economics, Elsevier, vol. 126(2), pages 324-334, August.
    5. Romauch, Martin & Hartl, Richard F., 2017. "Capacity planning for cluster tools in the semiconductor industry," International Journal of Production Economics, Elsevier, vol. 194(C), pages 167-180.
    6. Sławomir Bartoszek & Krzysztof Stankiewicz & Gabriel Kost & Grzegorz Ćwikła & Artur Dyczko, 2021. "Research on Ultrasonic Transducers to Accurately Determine Distances in a Coal Mine Conditions," Energies, MDPI, vol. 14(9), pages 1-22, April.
    7. Ferrer, Geraldo & Heath, Susan K. & Dew, Nicholas, 2011. "An RFID application in large job shop remanufacturing operations," International Journal of Production Economics, Elsevier, vol. 133(2), pages 612-621, October.
    8. Zhou, Wei & Piramuthu, Selwyn, 2013. "Remanufacturing with RFID item-level information: Optimization, waste reduction and quality improvement," International Journal of Production Economics, Elsevier, vol. 145(2), pages 647-657.
    9. Yao, Shiqing & Jiang, Zhibin & Li, Na & Zhang, Huai & Geng, Na, 2011. "A multi-objective dynamic scheduling approach using multiple attribute decision making in semiconductor manufacturing," International Journal of Production Economics, Elsevier, vol. 130(1), pages 125-133, March.
    10. Véronneau, Simon & Roy, Jacques, 2009. "RFID benefits, costs, and possibilities: The economical analysis of RFID deployment in a cruise corporation global service supply chain," International Journal of Production Economics, Elsevier, vol. 122(2), pages 692-702, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Romero-Silva, Rodrigo & Shaaban, Sabry & Marsillac, Erika & Hurtado, Margarita, 2018. "Exploiting the characteristics of serial queues to reduce the mean and variance of flow time using combined priority rules," International Journal of Production Economics, Elsevier, vol. 196(C), pages 211-225.
    2. Kasper, T.A. Arno & Land, Martin J. & Teunter, Ruud H., 2023. "Towards System State Dispatching in High‐Variety Manufacturing," Omega, Elsevier, vol. 114(C).
    3. Ali Fırat İnal & Çağrı Sel & Adnan Aktepe & Ahmet Kürşad Türker & Süleyman Ersöz, 2023. "A Multi-Agent Reinforcement Learning Approach to the Dynamic Job Shop Scheduling Problem," Sustainability, MDPI, vol. 15(10), pages 1-24, May.
    4. Wolosewicz, Cathy & Dauzère-Pérès, Stéphane & Aggoune, Riad, 2015. "A Lagrangian heuristic for an integrated lot-sizing and fixed scheduling problem," European Journal of Operational Research, Elsevier, vol. 244(1), pages 3-12.
    5. Tao Ren & Yan Zhang & Shuenn-Ren Cheng & Chin-Chia Wu & Meng Zhang & Bo-yu Chang & Xin-yue Wang & Peng Zhao, 2020. "Effective Heuristic Algorithms Solving the Jobshop Scheduling Problem with Release Dates," Mathematics, MDPI, vol. 8(8), pages 1-25, July.
    6. Rossi, Andrea, 2014. "Flexible job shop scheduling with sequence-dependent setup and transportation times by ant colony with reinforced pheromone relationships," International Journal of Production Economics, Elsevier, vol. 153(C), pages 253-267.
    7. Sels, Veronique & Craeymeersch, Kjeld & Vanhoucke, Mario, 2011. "A hybrid single and dual population search procedure for the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 215(3), pages 512-523, December.
    8. Jacomine Grobler & Andries Engelbrecht & Schalk Kok & Sarma Yadavalli, 2010. "Metaheuristics for the multi-objective FJSP with sequence-dependent set-up times, auxiliary resources and machine down time," Annals of Operations Research, Springer, vol. 180(1), pages 165-196, November.
    9. Ganesan, Viswanath Kumar & Sivakumar, Appa Iyer, 2006. "Scheduling in static jobshops for minimizing mean flowtime subject to minimum total deviation of job completion times," International Journal of Production Economics, Elsevier, vol. 103(2), pages 633-647, October.
    10. Roux, O. & Duvivier, D. & Dhaevers, V. & Meskens, N. & Artiba, A., 2008. "Multicriteria approach to rank scheduling strategies," International Journal of Production Economics, Elsevier, vol. 112(1), pages 192-201, March.
    11. Bürgy, Reinhard & Bülbül, Kerem, 2018. "The job shop scheduling problem with convex costs," European Journal of Operational Research, Elsevier, vol. 268(1), pages 82-100.
    12. Toly Chen, 2013. "A Systematic Cycle Time Reduction Procedure for Enhancing the Competitiveness and Sustainability of a Semiconductor Manufacturer," Sustainability, MDPI, vol. 5(11), pages 1-16, November.
    13. Azaron, Amir & Katagiri, Hideki & Kato, Kosuke & Sakawa, Masatoshi, 2006. "Longest path analysis in networks of queues: Dynamic scheduling problems," European Journal of Operational Research, Elsevier, vol. 174(1), pages 132-149, October.
    14. G I Zobolas & C D Tarantilis & G Ioannou, 2009. "A hybrid evolutionary algorithm for the job shop scheduling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(2), pages 221-235, February.
    15. Gómez Sánchez, Mariam & Lalla-Ruiz, Eduardo & Fernández Gil, Alejandro & Castro, Carlos & Voß, Stefan, 2023. "Resource-constrained multi-project scheduling problem: A survey," European Journal of Operational Research, Elsevier, vol. 309(3), pages 958-976.
    16. Giuseppe Lancia & Franca Rinaldi & Paolo Serafini, 2011. "A time-indexed LP-based approach for min-sum job-shop problems," Annals of Operations Research, Springer, vol. 186(1), pages 175-198, June.
    17. Zhang, Rui & Song, Shiji & Wu, Cheng, 2013. "A hybrid artificial bee colony algorithm for the job shop scheduling problem," International Journal of Production Economics, Elsevier, vol. 141(1), pages 167-178.
    18. D. Duvivier & O. Roux & V. Dhaevers & N. Meskens & A. Artiba, 2007. "Multicriteria optimisation and simulation: an industrial application," Annals of Operations Research, Springer, vol. 156(1), pages 45-60, December.
    19. Rajendran, Chandrasekharan & Ziegler, Hans, 2001. "A performance analysis of dispatching rules and a heuristic in static flowshops with missing operations of jobs," European Journal of Operational Research, Elsevier, vol. 131(3), pages 622-634, June.
    20. Wolfram Wiesemann & Daniel Kuhn & Berç Rustem, 2012. "Multi-resource allocation in stochastic project scheduling," Annals of Operations Research, Springer, vol. 193(1), pages 193-220, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:112:y:2008:i:2:p:532-547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.