IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v174y2006i1p132-149.html
   My bibliography  Save this article

Longest path analysis in networks of queues: Dynamic scheduling problems

Author

Listed:
  • Azaron, Amir
  • Katagiri, Hideki
  • Kato, Kosuke
  • Sakawa, Masatoshi

Abstract

No abstract is available for this item.

Suggested Citation

  • Azaron, Amir & Katagiri, Hideki & Kato, Kosuke & Sakawa, Masatoshi, 2006. "Longest path analysis in networks of queues: Dynamic scheduling problems," European Journal of Operational Research, Elsevier, vol. 174(1), pages 132-149, October.
  • Handle: RePEc:eee:ejores:v:174:y:2006:i:1:p:132-149
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(05)00212-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Salah E. Elmaghraby, 1967. "On the Expected Duration of PERT Type Networks," Management Science, INFORMS, vol. 13(5), pages 299-306, January.
    2. Azaron, Amir & Fatemi Ghomi, S. M. T., 2003. "Optimal control of service rates and arrivals in Jackson networks," European Journal of Operational Research, Elsevier, vol. 147(1), pages 17-31, May.
    3. Soroush, H. M., 1994. "The most critical path in a PERT network: A heuristic approach," European Journal of Operational Research, Elsevier, vol. 78(1), pages 93-105, October.
    4. A. Charnes & W. W. Cooper & G. L. Thompson, 1964. "Critical Path Analyses Via Chance Constrained and Stochastic Programming," Operations Research, INFORMS, vol. 12(3), pages 460-470, June.
    5. V. G. Kulkarni & V. G. Adlakha, 1986. "Markov and Markov-Regenerative pert Networks," Operations Research, INFORMS, vol. 34(5), pages 769-781, October.
    6. J. J. Martin, 1965. "Distribution of the Time Through a Directed, Acyclic Network," Operations Research, INFORMS, vol. 13(1), pages 46-66, February.
    7. Holthaus, Oliver & Rajendran, Chandrasekharan, 1997. "Efficient dispatching rules for scheduling in a job shop," International Journal of Production Economics, Elsevier, vol. 48(1), pages 87-105, January.
    8. Rajendran, Chandrasekharan & Holthaus, Oliver, 1999. "A comparative study of dispatching rules in dynamic flowshops and jobshops," European Journal of Operational Research, Elsevier, vol. 116(1), pages 156-170, July.
    9. John M. Burt, Jr. & Mark B. Garman, 1971. "Conditional Monte Carlo: A Simulation Technique for Stochastic Network Analysis," Management Science, INFORMS, vol. 18(3), pages 207-217, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Azaron, Amir & Tavakkoli-Moghaddam, Reza, 2007. "Multi-objective time-cost trade-off in dynamic PERT networks using an interactive approach," European Journal of Operational Research, Elsevier, vol. 180(3), pages 1186-1200, August.
    2. Azaron, Amir & Fynes, Brian & Modarres, Mohammad, 2011. "Due date assignment in repetitive projects," International Journal of Production Economics, Elsevier, vol. 129(1), pages 79-85, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azaron, Amir & Katagiri, Hideki & Sakawa, Masatoshi & Kato, Kosuke & Memariani, Azizollah, 2006. "A multi-objective resource allocation problem in PERT networks," European Journal of Operational Research, Elsevier, vol. 172(3), pages 838-854, August.
    2. Azaron, Amir & Fatemi Ghomi, S.M.T., 2008. "Lower bound for the mean project completion time in dynamic PERT networks," European Journal of Operational Research, Elsevier, vol. 186(1), pages 120-127, April.
    3. Azaron, Amir & Fynes, Brian & Modarres, Mohammad, 2011. "Due date assignment in repetitive projects," International Journal of Production Economics, Elsevier, vol. 129(1), pages 79-85, January.
    4. Azaron, Amir & Katagiri, Hideki & Kato, Kosuke & Sakawa, Masatoshi, 2006. "Modelling complex assemblies as a queueing network for lead time control," European Journal of Operational Research, Elsevier, vol. 174(1), pages 150-168, October.
    5. Tetsuo Iida, 2000. "Computing bounds on project duration distributions for stochastic PERT networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(7), pages 559-580, October.
    6. Brucker, Peter & Drexl, Andreas & Mohring, Rolf & Neumann, Klaus & Pesch, Erwin, 1999. "Resource-constrained project scheduling: Notation, classification, models, and methods," European Journal of Operational Research, Elsevier, vol. 112(1), pages 3-41, January.
    7. Masoud Arjmand & Amir Abbas Najafi & Majid Ebrahimzadeh, 2020. "Evolutionary algorithms for multi-objective stochastic resource availability cost problem," OPSEARCH, Springer;Operational Research Society of India, vol. 57(3), pages 935-985, September.
    8. Fatemi Ghomi, S. M. T. & Hashemin, S. S., 1999. "A new analytical algorithm and generation of Gaussian quadrature formula for stochastic network," European Journal of Operational Research, Elsevier, vol. 114(3), pages 610-625, May.
    9. Bregman, Robert L., 2009. "A heuristic procedure for solving the dynamic probabilistic project expediting problem," European Journal of Operational Research, Elsevier, vol. 192(1), pages 125-137, January.
    10. Lee, Heejung & Suh, Hyo-Won, 2008. "Estimating the duration of stochastic workflow for product development process," International Journal of Production Economics, Elsevier, vol. 111(1), pages 105-117, January.
    11. Davaadorjin Monhor, 2011. "A new probabilistic approach to the path criticality in stochastic PERT," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 19(4), pages 615-633, December.
    12. Fatemi Ghomi, S. M. T. & Rabbani, M., 2003. "A new structural mechanism for reducibility of stochastic PERT networks," European Journal of Operational Research, Elsevier, vol. 145(2), pages 394-402, March.
    13. Branke, Juergen & Pickardt, Christoph W., 2011. "Evolutionary search for difficult problem instances to support the design of job shop dispatching rules," European Journal of Operational Research, Elsevier, vol. 212(1), pages 22-32, July.
    14. Alvarez-Valdes, R. & Fuertes, A. & Tamarit, J. M. & Gimenez, G. & Ramos, R., 2005. "A heuristic to schedule flexible job-shop in a glass factory," European Journal of Operational Research, Elsevier, vol. 165(2), pages 525-534, September.
    15. Gary Mitchell, 2010. "On Calculating Activity Slack in Stochastic Project Networks," American Journal of Economics and Business Administration, Science Publications, vol. 2(1), pages 78-85, March.
    16. R. Alan Bowman, 2003. "Sensitivity curves for effective project management," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(5), pages 481-497, August.
    17. Lodree, Emmett & Jang, Wooseung & Klein, Cerry M., 2004. "A new rule for minimizing the number of tardy jobs in dynamic flow shops," European Journal of Operational Research, Elsevier, vol. 159(1), pages 258-263, November.
    18. Amir Azaron & Hideki Katagiri & Masatoshi Sakawa, 2007. "Time-cost trade-off via optimal control theory in Markov PERT networks," Annals of Operations Research, Springer, vol. 150(1), pages 47-64, March.
    19. Sweeney, Kevin D. & Sweeney, Donald C. & Campbell, James F., 2019. "The performance of priority dispatching rules in a complex job shop: A study on the Upper Mississippi River," International Journal of Production Economics, Elsevier, vol. 216(C), pages 154-172.
    20. Xiong, Hegen & Fan, Huali & Jiang, Guozhang & Li, Gongfa, 2017. "A simulation-based study of dispatching rules in a dynamic job shop scheduling problem with batch release and extended technical precedence constraints," European Journal of Operational Research, Elsevier, vol. 257(1), pages 13-24.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:174:y:2006:i:1:p:132-149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.