IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0269022.html
   My bibliography  Save this article

Modeling road accident fatalities with underdispersion and zero-inflated counts

Author

Listed:
  • Teerawat Simmachan
  • Noppachai Wongsai
  • Sangdao Wongsai
  • Rattana Lerdsuwansri

Abstract

In 2013, Thailand was ranked second in the world in road accident fatalities (RAFs), with 36.2 per 100,000 people. During the Songkran festival, which takes place during the traditional Thai New Year in April, the number of road traffic accidents (RTAs) and RAFs are markedly higher than on regular days, but few studies have investigated this issue as an effect of festivity. This study investigated the factors that contribute to RAFs using various count regression models. Data on 20,229 accidents in 2015 were collected from the Department of Disaster Prevention and Mitigation in Thailand. The Poisson and Conway–Maxwell–Poisson (CMP) distributions, and their zero-Inflated (ZI) versions were applied to fit the data. The results showed that RAFs in Thailand follow a count distribution with underdispersion and excessive zeros, which is rare. The ZICMP model marginally outperformed the CMP model, suggesting that having many zeros does not necessarily mean that the ZI model is required. The model choice depends on the question of interest, and a separate set of predictors highlights the distinct aspects of the data. Using ZICMP, road, weather, and environmental factors affected the differences in RAFs among all accidents, whereas month distinguished actual non-fatal accidents and crashes with or without deaths. As expected, actual non-fatal accidents were 2.37 times higher in April than in January. Using CMP, these variables were significant predictors of zeros and frequent deaths in each accident. The RAF average was surprisingly higher in other months than in January, except for April, which was unexpectedly lower. Thai authorities have invested considerable effort and resources to improve road safety during festival weeks to no avail. However, our study results indicate that people’s risk perceptions and public awareness of RAFs are misleading. Therefore, nationwide road safety should instead be advocated by the authorities to raise society’s awareness of everyday personal safety and the safety of others.

Suggested Citation

  • Teerawat Simmachan & Noppachai Wongsai & Sangdao Wongsai & Rattana Lerdsuwansri, 2022. "Modeling road accident fatalities with underdispersion and zero-inflated counts," PLOS ONE, Public Library of Science, vol. 17(11), pages 1-23, November.
  • Handle: RePEc:plo:pone00:0269022
    DOI: 10.1371/journal.pone.0269022
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0269022
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0269022&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0269022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sellers, Kimberly F. & Raim, Andrew, 2016. "A flexible zero-inflated model to address data dispersion," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 68-80.
    2. Galit Shmueli & Thomas P. Minka & Joseph B. Kadane & Sharad Borle & Peter Boatwright, 2005. "A useful distribution for fitting discrete data: revival of the Conway–Maxwell–Poisson distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(1), pages 127-142, January.
    3. R. W. Conway & W. L. Maxwell, 1962. "Network Dispatching by the Shortest-Operation Discipline," Operations Research, INFORMS, vol. 10(1), pages 51-73, February.
    4. Michener, Ron & Tighe, Carla, 1992. "A Poisson Regression Model of Highway Fatalities," American Economic Review, American Economic Association, vol. 82(2), pages 452-456, May.
    5. Thanapong Champahom & Sajjakaj Jomnonkwao & Chinnakrit Banyong & Watanya Nambulee & Ampol Karoonsoontawong & Vatanavongs Ratanavaraha, 2021. "Analysis of Crash Frequency and Crash Severity in Thailand: Hierarchical Structure Models Approach," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kimberly F. Sellers & Andrew W. Swift & Kimberly S. Weems, 2017. "A flexible distribution class for count data," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-21, December.
    2. Douglas Toledo & Cristiane Akemi Umetsu & Antonio Fernando Monteiro Camargo & Idemauro Antonio Rodrigues Lara, 2022. "Flexible models for non-equidispersed count data: comparative performance of parametric models to deal with underdispersion," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(3), pages 473-497, September.
    3. Gauss Cordeiro & Josemar Rodrigues & Mário Castro, 2012. "The exponential COM-Poisson distribution," Statistical Papers, Springer, vol. 53(3), pages 653-664, August.
    4. Mevin B. Hooten & Michael R. Schwob & Devin S. Johnson & Jacob S. Ivan, 2023. "Multistage hierarchical capture–recapture models," Environmetrics, John Wiley & Sons, Ltd., vol. 34(6), September.
    5. Can Zhou & Yan Jiao & Joan Browder, 2019. "How much do we know about seabird bycatch in pelagic longline fisheries? A simulation study on the potential bias caused by the usually unobserved portion of seabird bycatch," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-19, August.
    6. Darcy Steeg Morris & Kimberly F. Sellers, 2022. "A Flexible Mixed Model for Clustered Count Data," Stats, MDPI, vol. 5(1), pages 1-18, January.
    7. Joseph B. Kadane & Ramayya Krishnan & Galit Shmueli, 2006. "A Data Disclosure Policy for Count Data Based on the COM-Poisson Distribution," Management Science, INFORMS, vol. 52(10), pages 1610-1617, October.
    8. Burkey, Mark L. & Obeng, Kofi, 2005. "Crash Risk Reduction at Signalized Intersections Using Longitudinal Data," MPRA Paper 36281, University Library of Munich, Germany.
    9. Thanapong Champahom & Chamroeun Se & Sajjakaj Jomnonkwao & Tassana Boonyoo & Vatanavongs Ratanavaraha, 2023. "A Comparison of Contributing Factors between Young and Old Riders of Motorcycle Crash Severity on Local Roads," Sustainability, MDPI, vol. 15(3), pages 1-24, February.
    10. Imelda Trejo & Nicolas W Hengartner, 2022. "A modified Susceptible-Infected-Recovered model for observed under-reported incidence data," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-23, February.
    11. Fernando Bonassi & Rafael Stern & Cláudia Peixoto & Sergio Wechsler, 2015. "Exchangeability and the law of maturity," Theory and Decision, Springer, vol. 78(4), pages 603-615, April.
    12. Lord, Dominique & Mannering, Fred, 2010. "The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 291-305, June.
    13. Dexter Cahoy & Elvira Di Nardo & Federico Polito, 2021. "Flexible models for overdispersed and underdispersed count data," Statistical Papers, Springer, vol. 62(6), pages 2969-2990, December.
    14. Krivitsky, Pavel N., 2017. "Using contrastive divergence to seed Monte Carlo MLE for exponential-family random graph models," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 149-161.
    15. Muhammad Wisal Khattak & Hans De Backer & Pieter De Winne & Tom Brijs & Ali Pirdavani, 2024. "Comparative Evaluation of Crash Hotspot Identification Methods: Empirical Bayes vs. Potential for Safety Improvement Using Variants of Negative Binomial Models," Sustainability, MDPI, vol. 16(4), pages 1-22, February.
    16. McCarthy, Patrick S., 1999. "Public policy and highway safety: a city-wide perspective," Regional Science and Urban Economics, Elsevier, vol. 29(2), pages 231-244, March.
    17. Heather R. Tierney & Bing Pan, 2012. "A poisson regression examination of the relationship between website traffic and search engine queries," Netnomics, Springer, vol. 13(3), pages 155-189, October.
    18. Robert E. Gaunt & Satish Iyengar & Adri B. Olde Daalhuis & Burcin Simsek, 2019. "An asymptotic expansion for the normalizing constant of the Conway–Maxwell–Poisson distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(1), pages 163-180, February.
    19. Subrata Chakraborty & S. H. Ong, 2017. "Mittag - Leffler function distribution - a new generalization of hyper-Poisson distribution," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-17, December.
    20. Anderson, Michael, 2008. "Safety for whom? The effects of light trucks on traffic fatalities," Journal of Health Economics, Elsevier, vol. 27(4), pages 973-989, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0269022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.