An evacuation model considering pedestrian fall behavior in an inclined passenger ship
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2024.129794
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chen, Liang & Guo, Zhi-Liang & Wang, Tao & Li, Chuan-Yao & Tang, Tie-Qiao, 2023. "An evacuation guidance model for heterogeneous populations in large-scale pedestrian facilities with multiple exits," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 620(C).
- Wang, Xinjian & Liu, Zhengjiang & Loughney, Sean & Yang, Zaili & Wang, Yanfu & Wang, Jin, 2022. "Numerical analysis and staircase layout optimisation for a Ro-Ro passenger ship during emergency evacuation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
- Wang, Guanning & Chen, Tao & Zheng, Huijie & Wang, Jianyu & Hu, Xiangmin & Deng, Kaifeng & Tao, Zhenxiang & Luo, Ning, 2023. "Heterogeneous crowd dynamics considering the impact of personality traits under a fire emergency: A questionnaire & simulation-based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
- Ha, Vi & Lykotrafitis, George, 2012. "Agent-based modeling of a multi-room multi-floor building emergency evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2740-2751.
- Khamis, Nurulaqilla & Selamat, Hazlina & Ismail, Fatimah Sham & Lutfy, Omar Farouq & Haniff, Mohamad Fadzli & Nordin, Ili Najaa Aimi Mohd, 2020. "Optimized exit door locations for a safer emergency evacuation using crowd evacuation model and artificial bee colony optimization," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
- Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
- Li, Yang & Chen, Maoyin & Dou, Zhan & Zheng, Xiaoping & Cheng, Yuan & Mebarki, Ahmed, 2019. "A review of cellular automata models for crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
- Kang, Zengxin & Zhang, Lei & Li, Kun, 2019. "An improved social force model for pedestrian dynamics in shipwrecks," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 355-362.
- Li, Wenhang & Gong, Jianhua & Yu, Ping & Shen, Shen, 2016. "Modeling, simulation and analysis of group trampling risks during escalator transfers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 970-984.
- Sun, Jinlu & Lu, Shouxiang & Lo, Siuming & Ma, Jian & Xie, Qimiao, 2018. "Moving characteristics of single file passengers considering the effect of ship trim and heeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 476-487.
- Huo, Feizhou & Li, Chao & Li, Yufei & Lv, Wei & Ma, Yaping, 2022. "An extended model for describing pedestrian evacuation considering the impact of obstacles on the visual view," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
- Wang, Xinjian & Liu, Zhengjiang & Wang, Jin & Loughney, Sean & Yang, Zaili & Gao, Xiaowei, 2021. "Experimental study on individual walking speed during emergency evacuation with the influence of ship motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liu, Zhichen & Li, Ying & Zhang, Zhaoyi & Yu, Wenbo, 2022. "A new evacuation accessibility analysis approach based on spatial information," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
- Wang, Xinjian & Liu, Zhengjiang & Loughney, Sean & Yang, Zaili & Wang, Yanfu & Wang, Jin, 2022. "Numerical analysis and staircase layout optimisation for a Ro-Ro passenger ship during emergency evacuation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
- Deng, Fangwei & Wang, Jinghui & Li, Di & Lv, Wei & Fang, Zhiming, 2024. "Development of a three-stage hierarchical model for quick calculating stair evacuation time of high-rise building coupled with simulation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
- Guo, Chenglin & Huo, Feizhou & Li, Yufei & Li, Chao & Zhang, Jun, 2024. "An evacuation model considering pedestrian crowding and stampede under terrorist attacks," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
- Zhang, Yihao & Chai, Zhaojie & Lykotrafitis, George, 2021. "Deep reinforcement learning with a particle dynamics environment applied to emergency evacuation of a room with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
- Wan, Jiahui & Sui, Jie & Yu, Hua, 2014. "Research on evacuation in the subway station in China based on the Combined Social Force Model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 33-46.
- Qiu, Hongpeng & Wang, Xuan & Lin, Peng & Lee, Eric W.M., 2024. "Effects of step time and neighbourhood rules on pedestrian evacuation using an extended cellular automata model considering aggressiveness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
- Zhang, Jun & Cui, Haoran & Chraibi, Mohcine & Yu, Hang & Song, Weiguo, 2023. "Velocity-based model for pedestrian dynamics considering direction preferences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).
- Hu, Xiangmin & Chen, Tao & Deng, Kaifeng & Wang, Guanning, 2023. "Effects of aggressiveness on pedestrian room evacuation using extended cellular automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
- Huang, Rong & Zhao, Xuan & Zhou, Chenyu & Kong, Lingchen & Liu, Chengqing & Yu, Qiang, 2022. "Static floor field construction and fine discrete cellular automaton model: Algorithms, simulations and insights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
- Yu Song & Jia Liu & Qian Liu, 2021. "Dynamic Decision-Making Process of Evacuees during Post-Earthquake Evacuation near an Automatic Flap Barrier Gate System: A Broken Windows Perspective," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
- Johansson, Fredrik & Peterson, Anders & Tapani, Andreas, 2015. "Waiting pedestrians in the social force model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 95-107.
- Kaifeng Deng & Meng Li & Guanning Wang & Xiangmin Hu & Yan Zhang & Huijie Zheng & Koukou Tian & Tao Chen, 2022. "Experimental Study on Panic during Simulated Fire Evacuation Using Psycho- and Physiological Metrics," IJERPH, MDPI, vol. 19(11), pages 1-18, June.
- Li, Wenhang & Gong, Jianhua & Yu, Ping & Shen, Shen & Li, Rong & Duan, Qishen, 2015. "Simulation and analysis of congestion risk during escalator transfers using a modified social force model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 28-40.
- Khamis, Nurulaqilla & Selamat, Hazlina & Ismail, Fatimah Sham & Lutfy, Omar Farouq & Haniff, Mohamad Fadzli & Nordin, Ili Najaa Aimi Mohd, 2020. "Optimized exit door locations for a safer emergency evacuation using crowd evacuation model and artificial bee colony optimization," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
- Guo, Chenglin & Huo, Feizhou & Li, Chao & Li, Yufei, 2023. "An evacuation model considering the phototactic behavior of panic pedestrians under limited visual field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
- Ma, Yi & Yuen, Richard Kwok Kit & Lee, Eric Wai Ming, 2016. "Effective leadership for crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 333-341.
- García, Ander & Hernández-Delfin, Dariel & González, Borja & Garitaonaindia, Germán & Lee, Dae-Jin & Ellero, Marco, 2024. "Analysis of local density during football stadium access: Integrating pedestrian flow simulations and empirical data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
- Li, Wenhang & Li, Yi & Yu, Ping & Gong, Jianhua & Shen, Shen & Huang, Lin & Liang, Jianming, 2017. "Modeling, simulation and analysis of the evacuation process on stairs in a multi-floor classroom building of a primary school," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 157-172.
- Tamang, Nutthavuth & Sun, Yi, 2023. "Application of the dynamic Monte Carlo method to pedestrian evacuation dynamics," Applied Mathematics and Computation, Elsevier, vol. 445(C).
More about this item
Keywords
Pedestrian evacuation; Ship inclination; Extended CA model; Fall behavior;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:643:y:2024:i:c:s0378437124003030. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.