IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v638y2024ics0378437124001262.html
   My bibliography  Save this article

Recovering network topology and dynamics from sequences: A machine learning approach

Author

Listed:
  • Guerreiro, Lucas
  • Silva, Filipi N.
  • Amancio, Diego R.

Abstract

Sequences are prevalent in myriad real-world scenarios, making it imperative to discern the mechanisms behind symbol generation and, subsequently, to decode complex system behaviors. Diverging from conventional graph analysis methods that primarily relies on Markov chains and time series analysis, this paper offers a fresh perspective based on network science to understand sequences produced by agents navigating a networked topology. While the underlying processes generating such sequences often remain hidden in real-world situations, our research examines the efficacy of the co-occurrence method in the dual reconstruction of both network topology and agent dynamics responsible for sequence generation. Our approach uniquely delves into network-based stochastic heuristics and properties frequently exhibited in real-world networks. Our characterization of the reconstructed networks revealed valuable information regarding the process and topology used to create the sequences. Using a machine learning paradigm that considers 16 combinations of network topology and agent dynamics as classes, we achieved an accuracy of 87% with sequences generated with less than 40% of nodes visited. More extensive sequences turned out to generate improved machine-learning models. Our findings suggest that the proposed methodology could be extended to classify sequences and understand the mechanisms behind sequence generation.

Suggested Citation

  • Guerreiro, Lucas & Silva, Filipi N. & Amancio, Diego R., 2024. "Recovering network topology and dynamics from sequences: A machine learning approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
  • Handle: RePEc:eee:phsmap:v:638:y:2024:i:c:s0378437124001262
    DOI: 10.1016/j.physa.2024.129618
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124001262
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129618?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Arruda, Henrique F. & Silva, Filipi N. & Comin, Cesar H. & Amancio, Diego R. & Costa, Luciano da F., 2019. "Connecting network science and information theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 641-648.
    2. Diego Raphael Amancio & Cesar Henrique Comin & Dalcimar Casanova & Gonzalo Travieso & Odemir Martinez Bruno & Francisco Aparecido Rodrigues & Luciano da Fontoura Costa, 2014. "A Systematic Comparison of Supervised Classifiers," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-14, April.
    3. Meerschaert, Mark M. & Scalas, Enrico, 2006. "Coupled continuous time random walks in finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 114-118.
    4. Jeaneth Machicao & Edilson A Corrêa Jr. & Gisele H B Miranda & Diego R Amancio & Odemir M Bruno, 2018. "Authorship attribution based on Life-Like Network Automata," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-21, March.
    5. Quispe, Laura V.C. & Tohalino, Jorge A.V. & Amancio, Diego R., 2021. "Using virtual edges to improve the discriminability of co-occurrence text networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    6. Aguiar, Luis & Martens, Bertin, 2016. "Digital music consumption on the Internet: Evidence from clickstream data," Information Economics and Policy, Elsevier, vol. 34(C), pages 27-43.
    7. Corrêa Jr., Edilson A. & Silva, Filipi N. & da F. Costa, Luciano & Amancio, Diego R., 2017. "Patterns of authors contribution in scientific manuscripts," Journal of Informetrics, Elsevier, vol. 11(2), pages 498-510.
    8. Corrêa, Edilson A. & Amancio, Diego R., 2019. "Word sense induction using word embeddings and community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 180-190.
    9. Tohalino, Jorge A.V. & Amancio, Diego R., 2022. "On predicting research grants productivity via machine learning," Journal of Informetrics, Elsevier, vol. 16(2).
    10. Rajeev D S Raizada & Yune-Sang Lee, 2013. "Smoothness without Smoothing: Why Gaussian Naive Bayes Is Not Naive for Multi-Subject Searchlight Studies," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-10, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Corrêa, Edilson A. & Marinho, Vanessa Q. & Amancio, Diego R., 2020. "Semantic flow in language networks discriminates texts by genre and publication date," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    2. Jorge A. V. Tohalino & Laura V. C. Quispe & Diego R. Amancio, 2021. "Analyzing the relationship between text features and grants productivity," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 4255-4275, May.
    3. Heng Chen, 2023. "A lexical network approach to second language development," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-9, December.
    4. Tohalino, Jorge A.V. & Amancio, Diego R., 2022. "On predicting research grants productivity via machine learning," Journal of Informetrics, Elsevier, vol. 16(2).
    5. Hren, Darko & Pina, David G. & Norman, Christopher R. & Marušić, Ana, 2022. "What makes or breaks competitive research proposals? A mixed-methods analysis of research grant evaluation reports," Journal of Informetrics, Elsevier, vol. 16(2).
    6. Wang, Lei & Chen, Yi-Ming, 2020. "Shifted-Chebyshev-polynomial-based numerical algorithm for fractional order polymer visco-elastic rotating beam," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    7. Schumer, Rina & Baeumer, Boris & Meerschaert, Mark M., 2011. "Extremal behavior of a coupled continuous time random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(3), pages 505-511.
    8. Marc Ivaldi & Ambre Nicolle & Frank Verboven & Jiekai Zhang, 2024. "Displacement and complementarity in the recorded music industry: evidence from France," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 48(1), pages 43-94, March.
    9. Hidetaka Oshima & Shinichi Yamaguchi, 2023. "The impact of user-generated content authorization on demand in the game industry," SN Business & Economics, Springer, vol. 3(11), pages 1-26, November.
    10. Priscila T M Saito & Rodrigo Y M Nakamura & Willian P Amorim & João P Papa & Pedro J de Rezende & Alexandre X Falcão, 2015. "Choosing the Most Effective Pattern Classification Model under Learning-Time Constraint," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-23, June.
    11. Vincenza Carchiolo & Marco Grassia & Michele Malgeri & Giuseppe Mangioni, 2022. "Co-Authorship Networks Analysis to Discover Collaboration Patterns among Italian Researchers," Future Internet, MDPI, vol. 14(6), pages 1-15, June.
    12. Chau Minh Nguyen & Marcelo Vinhal Nepomuceno & Yany Grégoire & Renaud Legoux, 2024. "Striking the Right Notes: Long- and Short-Term Financial Impacts of Musicians’ Charity Advocacy Versus Other Signaling Types," Journal of Business Ethics, Springer, vol. 193(1), pages 217-233, August.
    13. Bergh, Andreas & Funcke, Alexander & Wernberg, Joakim, 2021. "The Sharing Economy: Definition, Measurement and its Relationship to Capitalism," Working Paper Series 1380, Research Institute of Industrial Economics.
    14. Stefan Bechtold & Catherine Tucker, 2014. "Trademarks, Triggers, and Online Search," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 11(4), pages 718-750, December.
    15. Davi Alves Oliveira & Hernane Borges de Barros Pereira, 2024. "Modeling texts with networks: comparing five approaches to sentence representation," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(6), pages 1-12, June.
    16. Mourelatos, Evangelos & Mourelatos, Haris, 2022. "Online video sharing and revenues during the Pandemic. Evidence from musical stream data," GLO Discussion Paper Series 1050 [pre.], Global Labor Organization (GLO).
    17. Thijs Devriendt & Mahsa Shabani & Karim Lekadir & Pascal Borry, 2022. "Data sharing platforms: instruments to inform and shape science policy on data sharing?," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(6), pages 3007-3019, June.
    18. Harald Edquist & Peter Goodridge & Jonathan Haskel, 2022. "The economic impact of streaming beyond GDP," Applied Economics Letters, Taylor & Francis Journals, vol. 29(5), pages 403-408, March.
    19. Steven James Watson & Daniel John Zizzo & Piers Fleming, 2015. "Determinants of Unlawful File Sharing: A Scoping Review," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-23, June.
    20. Frosio, Giancarlo F., 2016. "Digital piracy debunked: a short note on digital threats and intermediary liability," Internet Policy Review: Journal on Internet Regulation, Alexander von Humboldt Institute for Internet and Society (HIIG), Berlin, vol. 5(1), pages 1-22.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:638:y:2024:i:c:s0378437124001262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.