IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v554y2020ics0378437120303423.html
   My bibliography  Save this article

Causal evolution of global crisis in financial networks

Author

Listed:
  • Upadhyay, Shashankaditya
  • Banerjee, Anirban
  • Panigrahi, Prasanta K.

Abstract

We show that the causal network structure of the stock prices of prominent companies in the New York Stock Exchange reveals distinct patterns before, during, and after the 2007–08 global financial crisis. We find a reduced participation of banks in the market activity about seven years before the actual crisis, which indicates its possible role in the global crisis. Aggregated causal influences during the crisis period show a significant increase in the causal effects to the consumer discretionary, financial, and IT sectors. Moreover, we found no correlation between out-flux and in-flux of causal influence of the obtained networks. Two prominent results of the causal networks are, (a) the absence of feedback in the obtained directed network, and (b) the absence of strongly connected components indicating that a financial firm is unaffected by the causal influence propagated by itself. The analysis of causal out-flux clearly reveals that the market is driven by consumer staples and health-care sectors during the crisis phase, while the recovery phase, immediately after the crisis period, is influenced by material, health-care, and consumer discretionary sectors. We characterize the vertices in the causal networks by three local properties, viz., out-degree, in-degree, and node-betweenness, which reveal key companies producing, receiving, and mediating the causal influences. We also find that the aggregate sum of causal influences in companies from energy sector is among the least for all periods, indicating its robustness. A similar behavior is also reflected in the much smaller Indian market.

Suggested Citation

  • Upadhyay, Shashankaditya & Banerjee, Anirban & Panigrahi, Prasanta K., 2020. "Causal evolution of global crisis in financial networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
  • Handle: RePEc:eee:phsmap:v:554:y:2020:i:c:s0378437120303423
    DOI: 10.1016/j.physa.2020.124690
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120303423
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.124690?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sheri M. Markose, 2005. "Computability and Evolutionary Complexity: Markets as Complex Adaptive Systems (CAS)," Economic Journal, Royal Economic Society, vol. 115(504), pages 159-192, June.
    2. Cifter, Atilla & Ozun, Alper, 2007. "Multi-scale Causality between Energy Consumption and GNP in Emerging Markets: Evidence from Turkey," MPRA Paper 2483, University Library of Munich, Germany.
    3. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    4. Mantegna,Rosario N. & Stanley,H. Eugene, 2007. "Introduction to Econophysics," Cambridge Books, Cambridge University Press, number 9780521039871.
    5. Rua, António & Nunes, Luís C., 2009. "International comovement of stock market returns: A wavelet analysis," Journal of Empirical Finance, Elsevier, vol. 16(4), pages 632-639, September.
    6. Varsha Kulkarni & Nivedita Deo, 2007. "Correlation and volatility in an Indian stock market: A random matrix approach," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 60(1), pages 101-109, November.
    7. Eichler, Michael, 2007. "Granger causality and path diagrams for multivariate time series," Journal of Econometrics, Elsevier, vol. 137(2), pages 334-353, April.
    8. Hirdesh K. Pharasi & Kiran Sharma & Rakesh Chatterjee & Anirban Chakraborti & Francois Leyvraz & Thomas H. Seligman, 2018. "Identifying long-term precursors of financial market crashes using correlation patterns," Papers 1809.00885, arXiv.org, revised Sep 2018.
    9. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    10. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: II. Agent-based models," Post-Print hal-00621059, HAL.
    11. He, Zonglu & Maekawa, Koichi, 2001. "On spurious Granger causality," Economics Letters, Elsevier, vol. 73(3), pages 307-313, December.
    12. Neeraj, & Panigrahi, Prasanta K., 2017. "Causality and correlations between BSE and NYSE indexes: A Janus faced relationship," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 284-313.
    13. Kiran Sharma & Anindya S. Chakrabarti & Anirban Chakraborti, 2018. "Multi-layered Network Structure: Relationship Between Financial and Macroeconomic Dynamics," Papers 1805.06829, arXiv.org, revised Mar 2019.
    14. Upadhyay, Shashankaditya & Roy, Arijit & Ramprakash, M. & Idiculla, Jobin & Kumar, A. Senthil & Bhattacharya, Sudeepto, 2017. "A network theoretic study of ecological connectivity in Western Himalayas," Ecological Modelling, Elsevier, vol. 359(C), pages 246-257.
    15. Pantula, Sastry G & Gonzalez-Farias, Graciela & Fuller, Wayne A, 1994. "A Comparison of Unit-Root Test Criteria," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 449-459, October.
    16. Arinaminpathy, Nimalan & Kapadia, Sujit & May, Robert, 2012. "Size and complexity in model financial systems," Bank of England working papers 465, Bank of England.
    17. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: II. Agent-based models," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1013-1041.
    18. Tesfatsion, Leigh S., 2002. "Economic Agents and Markets As Emergent Phenomena," Staff General Research Papers Archive 10033, Iowa State University, Department of Economics.
    19. Ghosh, Sayantan & Manimaran, P. & Panigrahi, Prasanta K., 2011. "Characterizing multi-scale self-similar behavior and non-statistical properties of fluctuations in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4304-4316.
    20. Xavier Gabaix & Parameswaran Gopikrishnan & Vasiliki Plerou & H. Eugene Stanley, 2003. "A theory of power-law distributions in financial market fluctuations," Nature, Nature, vol. 423(6937), pages 267-270, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Javier, Prince Joseph Erneszer A. & Liponhay, Marissa P. & Dajac, Carlo Vincienzo G. & Monterola, Christopher P., 2022. "Causal network inference in a dam system and its implications on feature selection for machine learning forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    2. Upadhyay, Shashankaditya & Mukherjee, Indranil & Panigrahi, Prasanta K., 2023. "Inner composition alignment networks reveal financial impacts of COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Upadhyay, Shashankaditya & Mukherjee, Indranil & Panigrahi, Prasanta K., 2023. "Inner composition alignment networks reveal financial impacts of COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    2. Neeraj, & Panigrahi, Prasanta K., 2017. "Causality and correlations between BSE and NYSE indexes: A Janus faced relationship," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 284-313.
    3. Neeraj & Prasanta K. Panigrahi, 2016. "Causality and Correlations between BSE and NYSE indexes: A Janus Faced Relationship," Papers 1608.07796, arXiv.org.
    4. Di Xiao & Jun Wang & Hongli Niu, 2016. "Volatility Analysis of Financial Agent-Based Market Dynamics from Stochastic Contact System," Computational Economics, Springer;Society for Computational Economics, vol. 48(4), pages 607-625, December.
    5. Hirdesh K. Pharasi & Kiran Sharma & Anirban Chakraborti & Thomas H. Seligman, 2018. "Complex market dynamics in the light of random matrix theory," Papers 1809.07100, arXiv.org, revised Sep 2018.
    6. T. T. Chen & B. Zheng & Y. Li & X. F. Jiang, 2017. "New approaches in agent-based modeling of complex financial systems," Papers 1703.06840, arXiv.org.
    7. Junsheng Ha & Pei-Pei Tan & Kim-Leng Goh, 2018. "Linear and nonlinear causal relationship between energy consumption and economic growth in China: New evidence based on wavelet analysis," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-21, May.
    8. Nikolaos Th. Chatzarakis, 2021. "Revisiting the role and consequences of Econophysics from a Marxian perspective," Bulletin of Political Economy, Bulletin of Political Economy, vol. 15(1), pages 45-68, June.
    9. Adão, Luiz F.S. & Silveira, Douglas & Ely, Regis A. & Cajueiro, Daniel O., 2022. "The impacts of interest rates on banks’ loan portfolio risk-taking," Journal of Economic Dynamics and Control, Elsevier, vol. 144(C).
    10. Huang, Shupei & An, Haizhong & Gao, Xiangyun & Huang, Xuan, 2016. "Time–frequency featured co-movement between the stock and prices of crude oil and gold," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 985-995.
    11. Kaizoji, Taisei & Miyano, Michiko, 2016. "Why does the power law for stock price hold?," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 19-23.
    12. Hua, Jia-Chen & Chen, Lijian & Falcon, Liberty & McCauley, Joseph L. & Gunaratne, Gemunu H., 2015. "Variable diffusion in stock market fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 221-233.
    13. Kang, Sang Hoon & Tiwari, Aviral Kumar & Albulescu, Claudiu Tiberiu & Yoon, Seong-Min, 2019. "Time-frequency co-movements between the largest nonferrous metal futures markets," Resources Policy, Elsevier, vol. 61(C), pages 393-398.
    14. Christopher M Wray & Steven R Bishop, 2016. "A Financial Market Model Incorporating Herd Behaviour," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-28, March.
    15. Manahov, Viktor & Hudson, Robert & Linsley, Philip, 2014. "New evidence about the profitability of small and large stocks and the role of volume obtained using Strongly Typed Genetic Programming," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 33(C), pages 299-316.
    16. dos Santos, Renato Vieira & da Silva, Linaena Méricy, 2015. "Discreteness induced extinction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 17-25.
    17. Victor Olkhov, 2019. "Financial Variables, Market Transactions, and Expectations as Functions of Risk," IJFS, MDPI, vol. 7(4), pages 1-27, November.
    18. Anirban Chakraborti & Hrishidev & Kiran Sharma & Hirdesh K. Pharasi, 2019. "Phase separation and scaling in correlation structures of financial markets," Papers 1910.06242, arXiv.org, revised Jul 2020.
    19. Aydiner, Ekrem & Cherstvy, Andrey G. & Metzler, Ralf, 2018. "Wealth distribution, Pareto law, and stretched exponential decay of money: Computer simulations analysis of agent-based models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 278-288.
    20. Tang, Chor Foon, 2009. "Does causality technique matter to savings-growth nexus in Malaysia?," MPRA Paper 38535, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:554:y:2020:i:c:s0378437120303423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.