IDEAS home Printed from
   My bibliography  Save this article

Benford’s law and first letter of words


  • Yan, Xiaoyong
  • Yang, Seong-Gyu
  • Kim, Beom Jun
  • Minnhagen, Petter


A universal First-Letter Law (FLL) is derived and described. It predicts the percentages of first letters for words in novels. The FLL is akin to Benford’s law (BL) of first digits, which predicts the percentages of first digits in a data collection of numbers. Both are universal in the sense that FLL only depends on the numbers of letters in the alphabet, whereas BL only depends on the number of digits in the base of the number system. The existence of these types of universal laws appears counter-intuitive. Nonetheless both describe data very well. Relations to some earlier works are given. FLL predicts that an English author on the average starts about 16 out of 100 words with the English letter ‘t’. This is corroborated by data, yet an author can freely write anything. Fuller implications and the applicability of FLL remain for the future.

Suggested Citation

  • Yan, Xiaoyong & Yang, Seong-Gyu & Kim, Beom Jun & Minnhagen, Petter, 2018. "Benford’s law and first letter of words," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 305-315.
  • Handle: RePEc:eee:phsmap:v:512:y:2018:i:c:p:305-315
    DOI: 10.1016/j.physa.2018.08.133

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:512:y:2018:i:c:p:305-315. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.