IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v505y2018icp559-568.html
   My bibliography  Save this article

A novel relay selection strategy based on deterministic small world model on CCN

Author

Listed:
  • Wang, Jianrong
  • Wang, Jianping
  • Li, Lei
  • Yang, Bo

Abstract

In relatively homogeneous CCN (cooperative communication network), it is very important to determine which relay nodes participate in CC (cooperative communication), that makes the system achieve the maximum signal-to-noise ratio and energy efficiency, and ensure the fairness of node. Since the CCN usually has obvious small world characteristics, in this paper a CCN evolution model based on deterministic small world model was firstly proposed. The properties of CCN evolution model were analyzed such as degree distribution, average clustering coefficient and average path length. Then, based on CCN evolution model, a relay selection strategy with both max-degree and min-clustering coefficient was proposed. The effectiveness of the strategy is verified by comparison and analysis. The results of paper are more significant for building CCN to optimize resource and path of relay selection.

Suggested Citation

  • Wang, Jianrong & Wang, Jianping & Li, Lei & Yang, Bo, 2018. "A novel relay selection strategy based on deterministic small world model on CCN," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 559-568.
  • Handle: RePEc:eee:phsmap:v:505:y:2018:i:c:p:559-568
    DOI: 10.1016/j.physa.2018.03.089
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118304102
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.03.089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhongzhi Zhang & Shuigeng Zhou & Yi Qi & Jihong Guan, 2008. "Topologies and Laplacian spectra of a deterministic uniform recursive tree," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 63(4), pages 507-513, June.
    2. M. E. J. Newman & D. J. Watts, 1999. "Renormalization Group Analysis of the Small-World Network Model," Working Papers 99-04-029, Santa Fe Institute.
    3. Zhang, Zhongzhi & Zhou, Shuigeng & Shen, Zhen & Guan, Jihong, 2007. "From regular to growing small-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 765-772.
    4. Lu, Zhe-Ming & Guo, Shi-Ze, 2012. "A small-world network derived from the deterministic uniform recursive tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 87-92.
    5. Zhang, Yichao & Zhang, Zhongzhi & Zhou, Shuigeng & Guan, Jihong, 2010. "Deterministic weighted scale-free small-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3316-3324.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Lina & Huang, Ning & Li, Ruiying & Bai, Yanan, 2019. "A new fractal reliability model for networks with node fractal growth and no-loop," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 699-707.
    2. Lu, Zhe-Ming & Guo, Shi-Ze, 2012. "A small-world network derived from the deterministic uniform recursive tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 87-92.
    3. Lu, Zhe-Ming & Su, Yu-Xin & Guo, Shi-Ze, 2013. "Deterministic scale-free small-world networks of arbitrary order," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3555-3562.
    4. Marcus Berliant & Axel H. Watanabe, 2018. "A scale‐free transportation network explains the city‐size distribution," Quantitative Economics, Econometric Society, vol. 9(3), pages 1419-1451, November.
    5. An, Sufang & Gao, Xiangyun & An, Haizhong & Liu, Siyao & Sun, Qingru & Jia, Nanfei, 2020. "Dynamic volatility spillovers among bulk mineral commodities: A network method," Resources Policy, Elsevier, vol. 66(C).
    6. Xiangyun Gao & Haizhong An & Weiqiong Zhong, 2013. "Features of the Correlation Structure of Price Indices," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-9, April.
    7. Chung-Yuan Huang & Chuen-Tsai Sun & Hsun-Cheng Lin, 2005. "Influence of Local Information on Social Simulations in Small-World Network Models," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 8(4), pages 1-8.
    8. Yu, Haitao & Guo, Xinmeng & Wang, Jiang & Deng, Bin & Wei, Xile, 2015. "Vibrational resonance in adaptive small-world neuronal networks with spike-timing-dependent plasticity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 170-179.
    9. Mark Newman, 1999. "Small Worlds: The Structure of Social Networks," Working Papers 99-12-080, Santa Fe Institute.
    10. An, Haizhong & Gao, Xiangyun & Fang, Wei & Ding, Yinghui & Zhong, Weiqiong, 2014. "Research on patterns in the fluctuation of the co-movement between crude oil futures and spot prices: A complex network approach," Applied Energy, Elsevier, vol. 136(C), pages 1067-1075.
    11. Yu, Haitao & Guo, Xinmeng & Wang, Jiang & Deng, Bin & Wei, Xile, 2015. "Spike coherence and synchronization on Newman–Watts small-world neuronal networks modulated by spike-timing-dependent plasticity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 307-317.
    12. Song, Xiao & Shi, Wen & Ma, Yaofei & Yang, Chen, 2015. "Impact of informal networks on opinion dynamics in hierarchically formal organization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 916-924.
    13. Gancio, Juan & Rubido, Nicolás, 2022. "Critical parameters of the synchronisation's stability for coupled maps in regular graphs," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    14. Huang, Chung-Yuan & Tsai, Yu-Shiuan, 2010. "Effects of friend-making resources/costs and remembering on acquaintance networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 604-622.
    15. Liu, Hao & Chen, Xin & Huo, Long & Zhang, Yadong & Niu, Chunming, 2022. "Impact of inter-network assortativity on robustness against cascading failures in cyber–physical power systems," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    16. Quanbo Zha & Gang Kou & Hengjie Zhang & Haiming Liang & Xia Chen & Cong-Cong Li & Yucheng Dong, 2020. "Opinion dynamics in finance and business: a literature review and research opportunities," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-22, December.
    17. Yuan Hsiao, 2022. "Network diffusion of competing behaviors," Journal of Computational Social Science, Springer, vol. 5(1), pages 47-68, May.
    18. Uzun, Rukiye & Yilmaz, Ergin & Ozer, Mahmut, 2017. "Effects of autapse and ion channel block on the collective firing activity of Newman–Watts small-world neuronal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 386-396.
    19. Cao, Jinde & Guerrini, Luca & Cheng, Zunshui, 2019. "Stability and Hopf bifurcation of controlled complex networks model with two delays," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 21-29.
    20. Wang, Minggang & Chen, Ying & Tian, Lixin & Jiang, Shumin & Tian, Zihao & Du, Ruijin, 2016. "Fluctuation behavior analysis of international crude oil and gasoline price based on complex network perspective," Applied Energy, Elsevier, vol. 175(C), pages 109-127.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:505:y:2018:i:c:p:559-568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.