IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v502y2018icp49-57.html
   My bibliography  Save this article

AR(p)-based detrended fluctuation analysis

Author

Listed:
  • Alvarez-Ramirez, J.
  • Rodriguez, E.

Abstract

Autoregressive models are commonly used for modeling time-series from nature, economics and finance. This work explored simple autoregressive AR(p) models to remove long-term trends in detrended fluctuation analysis (DFA). Crude oil prices and bitcoin exchange rate were considered, with the former corresponding to a mature market and the latter to an emergent market. Results showed that AR(p)-based DFA performs similar to traditional DFA. However, the former DFA provides information on stability of long-term trends, which is valuable for understanding and quantifying the dynamics of complex time series from financial systems.

Suggested Citation

  • Alvarez-Ramirez, J. & Rodriguez, E., 2018. "AR(p)-based detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 49-57.
  • Handle: RePEc:eee:phsmap:v:502:y:2018:i:c:p:49-57
    DOI: 10.1016/j.physa.2018.02.203
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118302899
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.02.203?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qian, Xi-Yuan & Gu, Gao-Feng & Zhou, Wei-Xing, 2011. "Modified detrended fluctuation analysis based on empirical mode decomposition for the characterization of anti-persistent processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4388-4395.
    2. Mali, P. & Sarkar, S. & Ghosh, S. & Mukhopadhyay, A. & Singh, G., 2015. "Multifractal detrended fluctuation analysis of particle density fluctuations in high-energy nuclear collisions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 25-33.
    3. Chiarucci, Riccardo & Ruzzenenti, Franco & Loffredo, Maria I., 2014. "Detecting spatial homogeneity in the World Trade Web with Detrended Fluctuation Analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 1-7.
    4. Alvarez-Ramirez, Jose & Escarela-Perez, Rafael, 2010. "Time-dependent correlations in electricity markets," Energy Economics, Elsevier, vol. 32(2), pages 269-277, March.
    5. David Yermack, 2017. "Corporate Governance and Blockchains," Review of Finance, European Finance Association, vol. 21(1), pages 7-31.
    6. Amir Bashan & Ronny Bartsch & Jan W. Kantelhardt & Shlomo Havlin, 2008. "Comparison of detrending methods for fluctuation analysis," Papers 0804.4081, arXiv.org.
    7. Telesca, Luciano & Lovallo, Michele & Mammadov, Samir & Kadirov, Fakhraddin & Babayev, Gulam, 2015. "Power spectrum analysis and multifractal detrended fluctuation analysis of Earth’s gravity time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 426-434.
    8. Poterba, James M. & Summers, Lawrence H., 1988. "Mean reversion in stock prices : Evidence and Implications," Journal of Financial Economics, Elsevier, vol. 22(1), pages 27-59, October.
    9. Chianca, C.V. & Ticona, A. & Penna, T.J.P., 2005. "Fourier-detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 357(3), pages 447-454.
    10. Stošić, Dusan & Stošić, Darko & Stošić, Tatijana & Eugene Stanley, H., 2015. "Multifractal properties of price change and volume change of stock market indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 46-51.
    11. Bariviera, Aurelio F. & Basgall, María José & Hasperué, Waldo & Naiouf, Marcelo, 2017. "Some stylized facts of the Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 82-90.
    12. Alvarez-Ramirez, Jose & Rodriguez, Eduardo & Carlos Echeverría, Juan, 2005. "Detrending fluctuation analysis based on moving average filtering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 199-219.
    13. Morales, Raffaello & Di Matteo, T. & Gramatica, Ruggero & Aste, Tomaso, 2012. "Dynamical generalized Hurst exponent as a tool to monitor unstable periods in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3180-3189.
    14. Bashan, Amir & Bartsch, Ronny & Kantelhardt, Jan W. & Havlin, Shlomo, 2008. "Comparison of detrending methods for fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5080-5090.
    15. Serletis, Apostolos & Rosenberg, Aryeh Adam, 2009. "Mean reversion in the US stock market," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 2007-2015.
    16. Robert S. Pindyck, 1999. "The Long-Run Evolutions of Energy Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 1-27.
    17. Kantelhardt, Jan W & Koscielny-Bunde, Eva & Rego, Henio H.A & Havlin, Shlomo & Bunde, Armin, 2001. "Detecting long-range correlations with detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(3), pages 441-454.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eom, Cheoljun & Kaizoji, Taisei & Kang, Sang Hoon & Pichl, Lukas, 2019. "Bitcoin and investor sentiment: Statistical characteristics and predictability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 511-521.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kiyono, Ken & Tsujimoto, Yutaka, 2016. "Nonlinear filtering properties of detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 807-815.
    2. Gulich, Damián & Zunino, Luciano, 2014. "A criterion for the determination of optimal scaling ranges in DFA and MF-DFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 397(C), pages 17-30.
    3. Schumann, Aicko Y. & Kantelhardt, Jan W., 2011. "Multifractal moving average analysis and test of multifractal model with tuned correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(14), pages 2637-2654.
    4. Ruan, Yong-Ping & Zhou, Wei-Xing, 2011. "Long-term correlations and multifractal nature in the intertrade durations of a liquid Chinese stock and its warrant," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(9), pages 1646-1654.
    5. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    6. Qian, Xi-Yuan & Gu, Gao-Feng & Zhou, Wei-Xing, 2011. "Modified detrended fluctuation analysis based on empirical mode decomposition for the characterization of anti-persistent processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4388-4395.
    7. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    8. Zhao, Xiaojun & Shang, Pengjian & Zhao, Chuang & Wang, Jing & Tao, Rui, 2012. "Minimizing the trend effect on detrended cross-correlation analysis with empirical mode decomposition," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 166-173.
    9. Delignières, Didier & Marmelat, Vivien, 2014. "Strong anticipation and long-range cross-correlation: Application of detrended cross-correlation analysis to human behavioral data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 47-60.
    10. Fernandez Viviana, 2011. "Alternative Estimators of Long-Range Dependence," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(2), pages 1-37, March.
    11. Almurad, Zainy M.H. & Delignières, Didier, 2016. "Evenly spacing in Detrended Fluctuation Analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 63-69.
    12. Santos, José Vicente Cardoso & Perini, Noéle Bissoli & Moret, Marcelo Albano & Nascimento, Erick Giovani Sperandio & Moreira, Davidson Martins, 2021. "Scaling behavior of wind speed in the coast of Brazil and the South Atlantic Ocean: The crossover phenomenon," Energy, Elsevier, vol. 217(C).
    13. Kembro, Jackelyn M. & Flesia, Ana Georgina & Gleiser, Raquel M. & Perillo, María A. & Marin, Raul H., 2013. "Assessment of long-range correlation in animal behavior time series: The temporal pattern of locomotor activity of Japanese quail (Coturnix coturnix) and mosquito larva (Culex quinquefasciatus)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6400-6413.
    14. Xiong, Gang & Zhang, Shuning & Liu, Qiang, 2012. "The time-singularity multifractal spectrum distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4727-4739.
    15. Stratimirovic, Djordje & Batas-Bjelic, Ilija & Djurdjevic, Vladimir & Blesic, Suzana, 2021. "Changes in long-term properties and natural cycles of the Danube river level and flow induced by damming," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    16. Gulich, Damián & Baglietto, Gabriel & Rozenfeld, Alejandro F., 2018. "Temporal correlations in the Vicsek model with vectorial noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 590-604.
    17. Stavroyiannis, Stavros & Babalos, Vassilios & Bekiros, Stelios & Lahmiri, Salim & Uddin, Gazi Salah, 2019. "The high frequency multifractal properties of Bitcoin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 62-71.
    18. Leonarduzzi, R. & Wendt, H. & Abry, P. & Jaffard, S. & Melot, C. & Roux, S.G. & Torres, M.E., 2016. "p-exponent and p-leaders, Part II: Multifractal analysis. Relations to detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 319-339.
    19. Ni, Xiao-Hui & Jiang, Zhi-Qiang & Gu, Gao-Feng & Ren, Fei & Chen, Wei & Zhou, Wei-Xing, 2010. "Scaling and memory in the non-Poisson process of limit order cancelation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2751-2761.
    20. Zhao, Xiaojun & Shang, Pengjian & Lin, Aijing & Chen, Gang, 2011. "Multifractal Fourier detrended cross-correlation analysis of traffic signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3670-3678.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:502:y:2018:i:c:p:49-57. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.