IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v477y2017icp204-216.html
   My bibliography  Save this article

Exchangeability, extreme returns and Value-at-Risk forecasts

Author

Listed:
  • Huang, Chun-Kai
  • North, Delia
  • Zewotir, Temesgen

Abstract

In this paper, we propose a new approach to extreme value modelling for the forecasting of Value-at-Risk (VaR). In particular, the block maxima and the peaks-over-threshold methods are generalised to exchangeable random sequences. This caters for the dependencies, such as serial autocorrelation, of financial returns observed empirically. In addition, this approach allows for parameter variations within each VaR estimation window. Empirical prior distributions of the extreme value parameters are attained by using resampling procedures. We compare the results of our VaR forecasts to that of the unconditional extreme value theory (EVT) approach and the conditional GARCH-EVT model for robust conclusions.

Suggested Citation

  • Huang, Chun-Kai & North, Delia & Zewotir, Temesgen, 2017. "Exchangeability, extreme returns and Value-at-Risk forecasts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 204-216.
  • Handle: RePEc:eee:phsmap:v:477:y:2017:i:c:p:204-216
    DOI: 10.1016/j.physa.2017.02.080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117301802
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.02.080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    2. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    3. Jansen, Dennis W & de Vries, Casper G, 1991. "On the Frequency of Large Stock Returns: Putting Booms and Busts into Perspective," The Review of Economics and Statistics, MIT Press, vol. 73(1), pages 18-24, February.
    4. Araújo Santos, Paulo & Fraga Alves, Isabel & Hammoudeh, Shawkat, 2013. "High quantiles estimation with Quasi-PORT and DPOT: An application to value-at-risk for financial variables," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 487-496.
    5. Kjersti Aas & Ingrid Hobaek Haff, 2006. "The Generalized Hyperbolic Skew Student's t-Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 4(2), pages 275-309.
    6. Manfred Gilli & Evis këllezi, 2006. "An Application of Extreme Value Theory for Measuring Financial Risk," Computational Economics, Springer;Society for Computational Economics, vol. 27(2), pages 207-228, May.
    7. Knowledge Chinhamu & Chun-Kai Huang & Chun-Sung Huang & Jahvaid Hammujuddy, 2015. "Empirical Analyses of Extreme Value Models for the South African Mining Index," South African Journal of Economics, Economic Society of South Africa, vol. 83(1), pages 41-55, March.
    8. Ho, Lan-Chih & Burridge, Peter & Cadle, John & Theobald, Michael, 2000. "Value-at-risk: Applying the extreme value approach to Asian markets in the recent financial turmoil," Pacific-Basin Finance Journal, Elsevier, vol. 8(2), pages 249-275, May.
    9. Zhao, Xin & Scarrott, Carl John & Oxley, Les & Reale, Marco, 2011. "GARCH dependence in extreme value models with Bayesian inference," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1430-1440.
    10. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    11. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    12. Longin, Francois M., 2000. "From value at risk to stress testing: The extreme value approach," Journal of Banking & Finance, Elsevier, vol. 24(7), pages 1097-1130, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krzysztof Echaust & Małgorzata Just, 2020. "Value at Risk Estimation Using the GARCH-EVT Approach with Optimal Tail Selection," Mathematics, MDPI, vol. 8(1), pages 1-24, January.
    2. Chen, Yan & Yu, Wenqiang, 2020. "Setting the margins of Hang Seng Index Futures on different positions using an APARCH-GPD Model based on extreme value theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    2. Benjamin R. Auer & Benjamin Mögel, 2016. "How Accurate are Modern Value-at-Risk Estimators Derived from Extreme Value Theory?," CESifo Working Paper Series 6288, CESifo.
    3. Benjamin Mögel & Benjamin R. Auer, 2018. "How accurate are modern Value-at-Risk estimators derived from extreme value theory?," Review of Quantitative Finance and Accounting, Springer, vol. 50(4), pages 979-1030, May.
    4. Abdul-Aziz Ibn Musah & Jianguo Du & Hira Salah Ud din Khan & Alhassan Alolo Abdul-Rasheed Akeji, 2018. "The Asymptotic Decision Scenarios of an Emerging Stock Exchange Market: Extreme Value Theory and Artificial Neural Network," Risks, MDPI, vol. 6(4), pages 1-24, November.
    5. Krzysztof Echaust & Małgorzata Just, 2020. "Value at Risk Estimation Using the GARCH-EVT Approach with Optimal Tail Selection," Mathematics, MDPI, vol. 8(1), pages 1-24, January.
    6. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    7. Ra l de Jes s-Guti rrez & Roberto J. Santill n-Salgado, 2019. "Conditional Extreme Values Theory and Tail-related Risk Measures: Evidence from Latin American Stock Markets," International Journal of Economics and Financial Issues, Econjournals, vol. 9(3), pages 127-141.
    8. Gerlach, Richard & Wang, Chao, 2020. "Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 489-506.
    9. Chao Wang & Richard Gerlach, 2019. "Semi-parametric Realized Nonlinear Conditional Autoregressive Expectile and Expected Shortfall," Papers 1906.09961, arXiv.org.
    10. Bali, Turan G. & Mo, Hengyong & Tang, Yi, 2008. "The role of autoregressive conditional skewness and kurtosis in the estimation of conditional VaR," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 269-282, February.
    11. Fuentes, Fernanda & Herrera, Rodrigo & Clements, Adam, 2023. "Forecasting extreme financial risk: A score-driven approach," International Journal of Forecasting, Elsevier, vol. 39(2), pages 720-735.
    12. Manel Youssef & Lotfi Belkacem & Khaled Mokni, 2015. "Extreme Value Theory and long-memory-GARCH Framework: Application to Stock Market," International Journal of Economics and Empirical Research (IJEER), The Economics and Social Development Organization (TESDO), vol. 3(8), pages 371-388, August.
    13. Li, Longqing, 2017. "A Comparative Study of GARCH and EVT Model in Modeling Value-at-Risk," MPRA Paper 85645, University Library of Munich, Germany.
    14. Polanski, Arnold & Stoja, Evarist, 2017. "Forecasting multidimensional tail risk at short and long horizons," International Journal of Forecasting, Elsevier, vol. 33(4), pages 958-969.
    15. Alexander, Carol & Sheedy, Elizabeth, 2008. "Developing a stress testing framework based on market risk models," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2220-2236, October.
    16. Gonzalo Cortazar & Alejandro Bernales & Diether Beuermann, 2005. "Methodology and Implementation of Value-at-Risk Measures in Emerging Fixed-Income Markets with Infrequent Trading," Finance 0512030, University Library of Munich, Germany.
    17. Turan Bali & Panayiotis Theodossiou, 2007. "A conditional-SGT-VaR approach with alternative GARCH models," Annals of Operations Research, Springer, vol. 151(1), pages 241-267, April.
    18. James M. O'Brien & Pawel J. Szerszen, 2014. "An Evaluation of Bank VaR Measures for Market Risk During and Before the Financial Crisis," Finance and Economics Discussion Series 2014-21, Board of Governors of the Federal Reserve System (U.S.).
    19. Wagner Piazza Gaglianone & Luiz Renato Lima & Oliver Linton & Daniel R. Smith, 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 150-160, January.
    20. Wu, Qi & Yan, Xing, 2019. "Capturing deep tail risk via sequential learning of quantile dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).

    More about this item

    Keywords

    Value-at-risk; Extreme value; Exchangeability; Block maxima; Peaks-over-threshold;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:477:y:2017:i:c:p:204-216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.