IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v414y2014icp274-284.html
   My bibliography  Save this article

A new correlation coefficient for bivariate time-series data

Author

Listed:
  • Erdem, Orhan
  • Ceyhan, Elvan
  • Varli, Yusuf

Abstract

The correlation in time series has received considerable attention in the literature. Its use has attained an important role in the social sciences and finance. For example, pair trading in finance is concerned with the correlation between stock prices, returns, etc. In general, Pearson’s correlation coefficient is employed in these areas although it has many underlying assumptions which restrict its use. Here, we introduce a new correlation coefficient which takes into account the lag difference of data points. We investigate the properties of this new correlation coefficient. We demonstrate that it is more appropriate for showing the direction of the covariation of the two variables over time. We also compare the performance of the new correlation coefficient with Pearson’s correlation coefficient and Detrended Cross-Correlation Analysis (DCCA) via simulated examples.

Suggested Citation

  • Erdem, Orhan & Ceyhan, Elvan & Varli, Yusuf, 2014. "A new correlation coefficient for bivariate time-series data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 274-284.
  • Handle: RePEc:eee:phsmap:v:414:y:2014:i:c:p:274-284
    DOI: 10.1016/j.physa.2014.07.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114006384
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 39(3), pages 106-135.
    2. Kristoufek, Ladislav, 2014. "Measuring correlations between non-stationary series with DCCA coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 291-298.
    3. Phillips, P.C.B., 1986. "Understanding spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 33(3), pages 311-340, December.
    4. Zebende, G.F. & da Silva, M.F. & Machado Filho, A., 2013. "DCCA cross-correlation coefficient differentiation: Theoretical and practical approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(8), pages 1756-1761.
    5. Zebende, G.F., 2011. "DCCA cross-correlation coefficient: Quantifying level of cross-correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 614-618.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Hailin, 2015. "Piecewise aggregate representations and lower-bound distance functions for multivariate time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 10-25.
    2. Leena Pasanen & Lasse Holmström, 2017. "Scale space multiresolution correlation analysis for time series data," Computational Statistics, Springer, vol. 32(1), pages 197-218, March.
    3. repec:eee:phsmap:v:482:y:2017:i:c:p:42-55 is not listed on IDEAS

    More about this item

    Keywords

    Cross-correlation; Pearson’s correlation coefficient; DCCA; Stationarity; Non-stationary time series;

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:414:y:2014:i:c:p:274-284. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.