IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i3p510-519.html
   My bibliography  Save this article

Load balanced diffusive capture process on homophilic scale-free networks

Author

Listed:
  • Telcs, András
  • Csernai, Márton
  • Gulyás, András

Abstract

Diffusive capture processes are known to be an effective method for information search on complex networks. The biased N lions–lamb model provides quick search time by attracting random walkers to high degree nodes, where most capture events take place. The price of the efficiency is extreme traffic concentration on top hubs. We propose traffic load balancing provided by type specific biased random walks. For that we introduce a multi-type scale-free graph generation model, which embeds homophily structure into the network by utilizing type dependent random walks. We show analytically and with simulations that by augmenting the biased random walk method with a simple type homophily rule, we can alleviate the traffic concentration on high degree nodes by spreading the load proportionally between hubs with different types of our generated multi-type scale-free topologies.

Suggested Citation

  • Telcs, András & Csernai, Márton & Gulyás, András, 2013. "Load balanced diffusive capture process on homophilic scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(3), pages 510-519.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:3:p:510-519
    DOI: 10.1016/j.physa.2012.09.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112008527
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saramäki, Jari & Kaski, Kimmo, 2004. "Scale-free networks generated by random walkers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 341(C), pages 80-86.
    2. Lynne Hamill & Nigel Gilbert, 2009. "Social Circles: A Simple Structure for Agent-Based Social Network Models," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(2), pages 1-3.
    3. Josep M. Pujol & Andreas Flache & Jordi Delgado & Ramon Sangüesa, 2005. "How Can Social Networks Ever Become Complex? Modelling the Emergence of Complex Networks from Local Social Exchanges," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 8(4), pages 1-12.
    4. Gregory, Steve, 2012. "Ordered community structure in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2752-2763.
    5. Firat, Aykut & Chatterjee, Sangit & Yilmaz, Mustafa, 2007. "Genetic clustering of social networks using random walks," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6285-6294, August.
    6. Lee, Sungmin & Yook, Soon-Hyung & Kim, Yup, 2007. "Diffusive capture processes for information search," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 743-749.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:3:p:510-519. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.