IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v389y2010i17p3552-3564.html
   My bibliography  Save this article

Dynamic option pricing with endogenous stochastic arbitrage

Author

Listed:
  • Contreras, Mauricio
  • Montalva, Rodrigo
  • Pellicer, Rely
  • Villena, Marcelo

Abstract

Only few efforts have been made in order to relax one of the key assumptions of the Black–Scholes model: the no-arbitrage assumption. This is despite the fact that arbitrage processes usually exist in the real world, even though they tend to be short-lived. The purpose of this paper is to develop an option pricing model with endogenous stochastic arbitrage, capable of modelling in a general fashion any future and underlying asset that deviate itself from its market equilibrium. Thus, this investigation calibrates empirically the arbitrage on the futures on the S&P 500 index using transaction data from September 1997 to June 2009, from here a specific type of arbitrage called “arbitrage bubble”, based on a t-step function, is identified and hence used in our model. The theoretical results obtained for Binary and European call options, for this kind of arbitrage, show that an investment strategy that takes advantage of the identified arbitrage possibility can be defined, whenever it is possible to anticipate in relative terms the amplitude and timespan of the process. Finally, the new trajectory of the stock price is analytically estimated for a specific case of arbitrage and some numerical illustrations are developed. We find that the consequences of a finite and small endogenous arbitrage not only change the trajectory of the asset price during the period when it started, but also after the arbitrage bubble has already gone. In this context, our model will allow us to calibrate the B–S model to that new trajectory even when the arbitrage already started.

Suggested Citation

  • Contreras, Mauricio & Montalva, Rodrigo & Pellicer, Rely & Villena, Marcelo, 2010. "Dynamic option pricing with endogenous stochastic arbitrage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3552-3564.
  • Handle: RePEc:eee:phsmap:v:389:y:2010:i:17:p:3552-3564
    DOI: 10.1016/j.physa.2010.04.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437110003572
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2010.04.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adrian, Tobias, 2009. "Inference, arbitrage, and asset price volatility," Journal of Financial Intermediation, Elsevier, vol. 18(1), pages 49-64, January.
    2. Attari, Mukarram & Mello, Antonio S., 2006. "Financially constrained arbitrage in illiquid markets," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2793-2822, December.
    3. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    4. Kirill Ilinski, 1997. "Physics of Finance," Papers hep-th/9710148, arXiv.org.
    5. Matthias Otto, 2000. "Towards Non-Equilibrium Option Pricing Theory," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 565-565.
    6. Brennan, Michael J & Schwartz, Eduardo S, 1990. "Arbitrage in Stock Index Futures," The Journal of Business, University of Chicago Press, vol. 63(1), pages 7-31, January.
    7. Fedotov, Sergei & Panayides, Stephanos, 2005. "Stochastic arbitrage return and its implication for option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 345(1), pages 207-217.
    8. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    9. Cornell, Bradford & French, Kenneth R, 1983. "Taxes and the Pricing of Stock Index Futures," Journal of Finance, American Finance Association, vol. 38(3), pages 675-694, June.
    10. Rubinstein, Mark, 1994. "Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
    11. Panayides, Stephanos, 2006. "Arbitrage opportunities and their implications to derivative hedging," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 361(1), pages 289-296.
    12. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
    13. Figlewski, Stephen, 1984. "Hedging Performance and Basis Risk in Stock Index Futures," Journal of Finance, American Finance Association, vol. 39(3), pages 657-669, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kartono, Agus & Solekha, Siti & Sumaryada, Tony & Irmansyah,, 2021. "Foreign currency exchange rate prediction using non-linear Schrödinger equations with economic fundamental parameters," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Mauricio Contreras G, 2020. "An Application of Dirac's Interaction Picture to Option Pricing," Papers 2010.06747, arXiv.org.
    3. Contreras, M. & Echeverría, J. & Peña, J.P. & Villena, M., 2020. "Resonance phenomena in option pricing with arbitrage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    4. Mauricio Contreras G, 2020. "Endogenous Stochastic Arbitrage Bubbles and the Black--Scholes model," Papers 2009.09329, arXiv.org.
    5. Mauricio Contreras & Rely Pellicer & Daniel Santiagos & Marcelo Villena, 2015. "Calibration and simulation of arbitrage effects in a non-equilibrium quantum Black-Scholes model by using semiclassical methods," Papers 1512.05377, arXiv.org.
    6. Contreras, Mauricio & Pellicer, Rely & Villena, Marcelo & Ruiz, Aaron, 2010. "A quantum model of option pricing: When Black–Scholes meets Schrödinger and its semi-classical limit," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(23), pages 5447-5459.
    7. Contreras G., Mauricio, 2021. "Endogenous stochastic arbitrage bubbles and the Black–Scholes model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    8. Rotundo, Giulia, 2014. "Black–Scholes–Schrödinger–Zipf–Mandelbrot model framework for improving a study of the coauthor core score," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 404(C), pages 296-301.
    9. Mauricio Contreras G. & Roberto Ortiz H, 2021. "Three little arbitrage theorems," Papers 2104.10187, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Contreras, M. & Echeverría, J. & Peña, J.P. & Villena, M., 2020. "Resonance phenomena in option pricing with arbitrage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    2. Mauricio Contreras G. & Roberto Ortiz H, 2021. "Three little arbitrage theorems," Papers 2104.10187, arXiv.org.
    3. Contreras, Mauricio & Pellicer, Rely & Villena, Marcelo & Ruiz, Aaron, 2010. "A quantum model of option pricing: When Black–Scholes meets Schrödinger and its semi-classical limit," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(23), pages 5447-5459.
    4. Mauricio Contreras & Rely Pellicer & Daniel Santiagos & Marcelo Villena, 2015. "Calibration and simulation of arbitrage effects in a non-equilibrium quantum Black-Scholes model by using semiclassical methods," Papers 1512.05377, arXiv.org.
    5. Mauricio Contreras G, 2020. "Endogenous Stochastic Arbitrage Bubbles and the Black--Scholes model," Papers 2009.09329, arXiv.org.
    6. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175.
    7. Carol Alexandra & Leonardo M. Nogueira, 2005. "Optimal Hedging and Scale Inavriance: A Taxonomy of Option Pricing Models," ICMA Centre Discussion Papers in Finance icma-dp2005-10, Henley Business School, University of Reading, revised Nov 2005.
    8. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    9. Malz, Allan M., 1996. "Using option prices to estimate realignment probabilities in the European Monetary System: the case of sterling-mark," Journal of International Money and Finance, Elsevier, vol. 15(5), pages 717-748, October.
    10. Ait-Sahalia, Yacine & Lo, Andrew W., 2000. "Nonparametric risk management and implied risk aversion," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 9-51.
    11. Carr, Peter & Geman, Helyette & Madan, Dilip B., 2001. "Pricing and hedging in incomplete markets," Journal of Financial Economics, Elsevier, vol. 62(1), pages 131-167, October.
    12. Carey, Alexander, 2006. "Path-conditional forward volatility," MPRA Paper 4964, University Library of Munich, Germany.
    13. Bakshi, Gurdip S. & Zhiwu, Chen, 1997. "An alternative valuation model for contingent claims," Journal of Financial Economics, Elsevier, vol. 44(1), pages 123-165, April.
    14. Zhu, Ke & Ling, Shiqing, 2015. "Model-based pricing for financial derivatives," Journal of Econometrics, Elsevier, vol. 187(2), pages 447-457.
    15. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    16. Hosam Ki & Byungwook Choi & Kook‐Hyun Chang & Miyoung Lee, 2005. "Option pricing under extended normal distribution," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 25(9), pages 845-871, September.
    17. René Garcia & Eric Renault, 1998. "Risk Aversion, Intertemporal Substitution, and Option Pricing," Working Papers 98-10, Center for Research in Economics and Statistics.
    18. Krylova, Elizaveta & Nikkinen, Jussi & Vähämaa, Sami, 2009. "Cross-dynamics of volatility term structures implied by foreign exchange options," Journal of Economics and Business, Elsevier, vol. 61(5), pages 355-375, September.
    19. Chalamandaris, Georgios & Tsekrekos, Andrianos E., 2010. "Predictable dynamics in implied volatility surfaces from OTC currency options," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1175-1188, June.
    20. Saurabha, Rritu & Tiwari, Manvendra, 2007. "Empirical Study of the effect of including Skewness and Kurtosis in Black Scholes option pricing formula on S&P CNX Nifty index Options," MPRA Paper 6329, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:389:y:2010:i:17:p:3552-3564. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.