IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v388y2009i9p1946-1958.html
   My bibliography  Save this article

Linked by loops: Network structure and switch integration in complex dynamical systems

Author

Listed:
  • Wylie, Dennis Cates

Abstract

Simple nonlinear dynamical systems with multiple stable stationary states are often taken as models for switchlike biological systems. This paper considers the interaction of multiple such simple multistable systems when they are embedded together into a larger dynamical “supersystem.” Attention is focused on the network structure of the resulting set of coupled differential equations, and the consequences of this structure on the propensity of the embedded switches to act independently versus cooperatively. Specifically, it is argued that both larger average and larger variance of the node degree distribution lead to increased switch independence. Given the frequency of empirical observations of high variance degree distributions (e.g., power-law) in biological networks, it is suggested that the results presented here may aid in identifying switch-integrating subnetworks as comparatively homogenous, low-degree, substructures. Potential applications to ecological problems such as the relationship of stability and complexity are also briefly discussed.

Suggested Citation

  • Wylie, Dennis Cates, 2009. "Linked by loops: Network structure and switch integration in complex dynamical systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(9), pages 1946-1958.
  • Handle: RePEc:eee:phsmap:v:388:y:2009:i:9:p:1946-1958
    DOI: 10.1016/j.physa.2009.01.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437109000466
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2009.01.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andreas Wagner, 2001. "The Yeast Protein Interaction Network Evolves Rapidly and Contains Few Redundant Duplicate Genes," Working Papers 01-04-022, Santa Fe Institute.
    2. Olaf Sporns & Rolf Kötter, 2004. "Motifs in Brain Networks," PLOS Biology, Public Library of Science, vol. 2(11), pages 1-1, October.
    3. James Quirk & Richard Ruppert, 1965. "Qualitative Economics and the Stability of Equilibrium," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 32(4), pages 311-326.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giorgio Giorgi, 2022. "Nonsingular M-matrices: a Tour in the Various Characterizations and in Some Related Classes," DEM Working Papers Series 206, University of Pavia, Department of Economics and Management.
    2. Colizza, Vittoria & Flammini, Alessandro & Maritan, Amos & Vespignani, Alessandro, 2005. "Characterization and modeling of protein–protein interaction networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 352(1), pages 1-27.
    3. Xing, Miaomiao & Song, Xinlin & Wang, Hengtong & Yang, Zhuoqin & Chen, Yong, 2022. "Frequency synchronization and excitabilities of two coupled heterogeneous Morris-Lecar neurons," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    4. Brouwer, F. & Nijkamp, P., 1983. "Qualitative structure analysis of complex systems," Serie Research Memoranda 0008, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    5. Andreas Wagner, 2002. "Mutational Robustness and Asymmetric Functional Specialization of Duplicate Genes," Working Papers 02-02-006, Santa Fe Institute.
    6. Deng, Bin & Zhu, Zechen & Yang, Shuangming & Wei, Xile & Wang, Jiang & Yu, Haitao, 2016. "FPGA implementation of motifs-based neuronal network and synchronization analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 388-402.
    7. Hanbaek Lyu & Yacoub H. Kureh & Joshua Vendrow & Mason A. Porter, 2024. "Learning low-rank latent mesoscale structures in networks," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Zhou, Peipei & Cai, Shuiming & Liu, Zengrong & Chen, Luonan & Wang, Ruiqi, 2013. "Coupling switches and oscillators as a means to shape cellular signals in biomolecular systems," Chaos, Solitons & Fractals, Elsevier, vol. 50(C), pages 115-126.
    9. Logan Harriger & Martijn P van den Heuvel & Olaf Sporns, 2012. "Rich Club Organization of Macaque Cerebral Cortex and Its Role in Network Communication," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    10. Sun, Lanfang & Jiang, Lu & Li, Menghui & He, Dacheng, 2006. "Statistical analysis of gene regulatory networks reconstructed from gene expression data of lung cancer," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 663-671.
    11. Eleanor R Brush & David C Krakauer & Jessica C Flack, 2013. "A Family of Algorithms for Computing Consensus about Node State from Network Data," PLOS Computational Biology, Public Library of Science, vol. 9(7), pages 1-17, July.
    12. G Karl Steinke & Roberto F Galán, 2011. "Brain Rhythms Reveal a Hierarchical Network Organization," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-15, October.
    13. Raghavendra Singh & Seema Nagar & Amit A Nanavati, 2015. "Analysing Local Sparseness in the Macaque Brain Network," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-22, October.
    14. Yu, Haitao & Guo, Xinmeng & Qin, Qing & Deng, Yun & Wang, Jiang & Liu, Jing & Cao, Yibin, 2017. "Synchrony dynamics underlying effective connectivity reconstruction of neuronal circuits," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 674-687.
    15. Sah, Raaj, 2000. "Some results for the comparative statics of steady states of higher-order discrete dynamic systems," Journal of Economic Dynamics and Control, Elsevier, vol. 24(10), pages 1481-1489, September.
    16. How to Reconstruct a Large Genetic Network from n Gene Perturbations in Fewer than n2 Easy Steps, 2001. "How to Reconstruct a Large Genetic Network from," Working Papers 01-09-047, Santa Fe Institute.
    17. Sah, Raaj, 2000. "Some results for the comparative statics of steady states of higher-order discrete dynamic systems," Journal of Economic Dynamics and Control, Elsevier, vol. 24(10), pages 1481-1489, September.
    18. Christoph Schmidt & Thomas Weiss & Thomas Lehmann & Herbert Witte & Lutz Leistritz, 2013. "Extracting Labeled Topological Patterns from Samples of Networks," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-11, August.
    19. Deng, Bin & Deng, Yun & Yu, Haitao & Guo, Xinmeng & Wang, Jiang, 2016. "Dependence of inter-neuronal effective connectivity on synchrony dynamics in neuronal network motifs," Chaos, Solitons & Fractals, Elsevier, vol. 82(C), pages 48-59.
    20. George Lady, 2000. "Topics in nonparametric comparative statics and stability," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 6(1), pages 67-83, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:388:y:2009:i:9:p:1946-1958. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.