IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v384y2007i2p493-506.html
   My bibliography  Save this article

Hydrodynamics from kinetic models of conservative economies

Author

Listed:
  • Düring, B.
  • Toscani, G.

Abstract

In this paper, we introduce and discuss the passage to hydrodynamic equations for kinetic models of conservative economies, in which the density of wealth depends on additional parameters, like the propensity to invest. As in kinetic theory of rarefied gases, the closure depends on the knowledge of the homogeneous steady wealth distribution (the Maxwellian) of the underlying kinetic model. The collision operator used here is the Fokker–Planck operator introduced by J.P. Bouchaud and M. Mezard [Wealth condensation in a simple model of economy, Physica A 282 (2000) 536–545], which has been recently obtained in a suitable asymptotic of a Boltzmann-like model involving both exchanges between agents and speculative trading by S. Cordier, L. Pareschi and one of the authors [S. Cordier, L. Pareschi, G. Toscani, On a kinetic model for a simple market economy, J. Stat. Phys. 120 (2005) 253–277]. Numerical simulations on the fluid equations are then proposed and analyzed for various laws of variation of the propensity.

Suggested Citation

  • Düring, B. & Toscani, G., 2007. "Hydrodynamics from kinetic models of conservative economies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 493-506.
  • Handle: RePEc:eee:phsmap:v:384:y:2007:i:2:p:493-506 DOI: 10.1016/j.physa.2007.05.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843710700619X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Romanovsky, M. & Oks, E., 2001. "Time intervals distribution of stock transactions and time correlation of stock indices in the model space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 168-174.
    2. Chatterjee, Arnab & K. Chakrabarti, Bikas & Manna, S.S, 2004. "Pareto law in a kinetic model of market with random saving propensity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(1), pages 155-163.
    3. Mainardi, Francesco & Raberto, Marco & Gorenflo, Rudolf & Scalas, Enrico, 2000. "Fractional calculus and continuous-time finance II: the waiting-time distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 468-481.
    4. anonymous, 1980. "What’s wrong with macroeconomics," Quarterly Review, Federal Reserve Bank of Minneapolis, issue Sum.
    5. repec:wsi:ijmpcx:v:11:y:2000:i:06:n:s0129183100000936 is not listed on IDEAS
    6. Arnab Chatterjee & Bikas K. Chakrabarti & S. S. Manna, 2003. "Pareto Law in a Kinetic Model of Market with Random Saving Propensity," Papers cond-mat/0301289, arXiv.org, revised Jan 2004.
    7. Katarzyna Sznajd-Weron & Józef Sznajd, 2000. "Opinion Evolution In Closed Community," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., pages 1157-1165.
    8. Wang, Yougui & Ding, Ning & Zhang, Li, 2003. "The circulation of money and holding time distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(3), pages 665-677.
    9. Jean-Philippe Bouchaud & Marc Mezard, 2000. "Wealth condensation in a simple model of economy," Science & Finance (CFM) working paper archive 500026, Science & Finance, Capital Fund Management.
    10. S. Ispolatov & P.L. Krapivsky & S. Redner, 1998. "Wealth distributions in asset exchange models," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 2(2), pages 267-276, March.
    11. F. Slanina & H. Lavicka, 2003. "Analytical results for the Sznajd model of opinion formation," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 35(2), pages 279-288, September.
    12. Adrian Dragulescu & Victor M. Yakovenko, 2000. "Statistical mechanics of money," Papers cond-mat/0001432, arXiv.org, revised Aug 2000.
    13. Bouchaud, Jean-Philippe & Mézard, Marc, 2000. "Wealth condensation in a simple model of economy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 282(3), pages 536-545.
    14. Arnab Chatterjee & Bikas K. Chakrabarti & Robin B. Stinchcombe, 2005. "Master equation for a kinetic model of trading market and its analytic solution," Papers cond-mat/0501413, arXiv.org, revised Aug 2005.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pierre Degond & Jian-Guo Liu & Christian Ringhofer, 2014. "Evolution of wealth in a nonconservative economy driven by local Nash equilibria," Working Papers hal-00967662, HAL.
    2. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics: agent-based models," Post-Print hal-00621059, HAL.
    3. Marco Torregrossa & Giuseppe Toscani, 2017. "Wealth distribution in presence of debts. A Fokker--Planck description," Papers 1709.09858, arXiv.org.
    4. Pierre Degond & Jian-Guo Liu & Christian Ringhofer, 2013. "Evolution of the distribution of wealth in an economic environment driven by local Nash equilibria," Papers 1307.1685, arXiv.org.
    5. G. Toscani & C. Brugna & S. Demichelis, 2012. "Kinetic models for the trading of goods," Papers 1208.6305, arXiv.org.
    6. Pierre Degond & Jian-Guo Liu & Christian Ringhofer, 2014. "Evolution of wealth in a nonconservative economy driven by local Nash equilibria," Papers 1403.7800, arXiv.org.
    7. Maldarella, Dario & Pareschi, Lorenzo, 2012. "Kinetic models for socio-economic dynamics of speculative markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 715-730.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:384:y:2007:i:2:p:493-506. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.