IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v284y2000i1p478-488.html
   My bibliography  Save this article

From naive to sophisticated behavior in multiagents-based financial market models

Author

Listed:
  • Mansilla, R

Abstract

The behavior of physical complexity and mutual information function of the outcome of a model of heterogeneous, inductive rational agents inspired by the El Farol Bar problem and the Minority Game is studied. The first magnitude is a measure rooted in the Kolmogorov–Chaitin theory and the second a measure related to Shannon's information entropy. Extensive computer simulations were done, as a result of which, is proposed an ansatz for physical complexity of the type C(l)=lα and the dependence of the exponent α from the parameters of the model is established. The accuracy of our results and the relationship with the behavior of mutual information function as a measure of time correlation of agents choice are discussed.

Suggested Citation

  • Mansilla, R, 2000. "From naive to sophisticated behavior in multiagents-based financial market models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 284(1), pages 478-488.
  • Handle: RePEc:eee:phsmap:v:284:y:2000:i:1:p:478-488
    DOI: 10.1016/S0378-4371(00)00227-2
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437100002272
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(00)00227-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    2. W. Brian Arthur, 1994. "Inductive Reasoning, Bounded Rationality and the Bar Problem," Working Papers 94-03-014, Santa Fe Institute.
    3. Rustichini, A., 1998. "Sophisticated Players and Sophisticated Agents," Other publications TiSEM de5b9fc1-8021-4255-8a80-5, Tilburg University, School of Economics and Management.
    4. Johnson, N.F. & Jarvis, S. & Jonson, R. & Cheung, P. & Kwong, Y.R. & Hui, P.M., 1998. "Volatility and agent adaptability in a self-organizing market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 258(1), pages 230-236.
    5. Arthur, W Brian, 1994. "Inductive Reasoning and Bounded Rationality," American Economic Review, American Economic Association, vol. 84(2), pages 406-411, May.
    6. Challet, D. & Zhang, Y.-C., 1997. "Emergence of cooperation and organization in an evolutionary game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 246(3), pages 407-418.
    7. Rustichini, A., 1998. "Sophisticated Players and Sophisticated Agents," Discussion Paper 1998-110, Tilburg University, Center for Economic Research.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marsili, Matteo & Challet, Damien & Zecchina, Riccardo, 2000. "Exact solution of a modified El Farol's bar problem: Efficiency and the role of market impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 280(3), pages 522-553.
    2. Chmura, Thorsten & Pitz, Thomas, 2004. "Minority Game: Experiments and Simulations of Traffic Scenarios," Bonn Econ Discussion Papers 23/2004, University of Bonn, Bonn Graduate School of Economics (BGSE).
    3. Willemien Kets, 2007. "The minority game: An economics perspective," Papers 0706.4432, arXiv.org.
    4. Epstein, Daniel & Bazzan, Ana L.C., 2013. "The value of less connected agents in Boolean networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5387-5398.
    5. Kets, W., 2008. "Networks and learning in game theory," Other publications TiSEM 7713fce1-3131-498c-8c6f-3, Tilburg University, School of Economics and Management.
    6. Wawrzyniak, Karol & Wiślicki, Wojciech, 2012. "Mesoscopic approach to minority games in herd regime," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 2056-2082.
    7. Challet, Damien & Zhang, Yi-Cheng, 1998. "On the minority game: Analytical and numerical studies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 256(3), pages 514-532.
    8. Gu, Gao-Feng & Chen, Wei & Zhou, Wei-Xing, 2008. "Empirical regularities of order placement in the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3173-3182.
    9. Linde, Jona & Sonnemans, Joep & Tuinstra, Jan, 2014. "Strategies and evolution in the minority game: A multi-round strategy experiment," Games and Economic Behavior, Elsevier, vol. 86(C), pages 77-95.
    10. Mello, Bernardo A. & Cajueiro, Daniel O., 2008. "Minority games, diversity, cooperativity and the concept of intelligence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 557-566.
    11. Giovanna Devetag & Francesca Pancotto & Thomas Brenner, 2011. "The Minority Game Unpacked: Coordination and Competition in a Team-based Experiment," LEM Papers Series 2011/18, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    12. Arthur Charpentier & Romuald Élie & Carl Remlinger, 2023. "Reinforcement Learning in Economics and Finance," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 425-462, June.
    13. Shubham Agarwal & Diptesh Ghosh & Anindya S. Chakrabarti, 2016. "Self-organization in a distributed coordination game through heuristic rules," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(12), pages 1-10, December.
    14. Chenge Zhu & Guang Yang & Kenan An & Jiping Huang, 2014. "The Leverage Effect on Wealth Distribution in a Controllable Laboratory Stock Market," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-10, June.
    15. Olivier Tercieux & Mark Voorneveld, 2010. "The cutting power of preparation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(1), pages 85-101, February.
    16. Shu-Heng Chen & Umberto Gostoli, 2017. "Coordination in the El Farol Bar problem: The role of social preferences and social networks," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(1), pages 59-93, April.
    17. Matteo Marsili & Damien Challet, 2001. "Trading Behavior And Excess Volatility In Toy Markets," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 3-17.
    18. Giulio Bottazzi & Giovanna Devetag, 2002. "Coordination and self-organization in minority games: experimental evidence," CEEL Working Papers 0215, Cognitive and Experimental Economics Laboratory, Department of Economics, University of Trento, Italia.
    19. Matzke, Christina & Challet, Damien, 2008. "Taking a shower in Youth Hostels: risks and delights of heterogeneity," Bonn Econ Discussion Papers 1/2008, University of Bonn, Bonn Graduate School of Economics (BGSE).
    20. Rothenstein, R & Pawelzik, K, 2003. "Evolution and anti-evolution in a minimal stock market model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 326(3), pages 534-543.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:284:y:2000:i:1:p:478-488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.