IDEAS home Printed from https://ideas.repec.org/a/eee/oprepe/v11y2023ics221471602300026x.html
   My bibliography  Save this article

Research on the scheduling method of ground resource under uncertain arrival time

Author

Listed:
  • Xu, Guoning
  • Lin, Yupeng
  • Wu, Zhiying
  • Chen, Qingxin
  • Mao, Ning

Abstract

We present a two-stage scheduling approach including proactive and reactive scheduling to solve the ground resource scheduling problem with uncertain arrival time. In the first stage, an integer programming model is constructed to minimize the delay and transfer costs. After solving this model, we obtain a baseline scheduling plan that considers the service arrival time uncertainty. In the second stage, the feasibility of the subsequent benchmark plan is evaluated based on the current state of the services and resources. The reactive scheduling model is enabled when trigger conditions are met. Moreover, an improved adaptive large neighborhood search is designed to solve the proactive scheduling model effectively. Real data from an international airport in South China is used as a test case to compare different scheduling strategies. The results show that it is difficult to handle the uncertainty of the problem with the benchmark plan that simply considered buffer time. Compared with rolling time-domain scheduling, the average transfer cost of the scheduling strategy proposed in this paper increased slightly, but the average service delay cost can be reduced significantly. Algorithm-wise, instances of different scales are designed to verify the effectiveness of the improved adaptive large neighborhood search algorithm. The efficiency of the algorithm scheme is better than that of the Gurobi solver scheme in medium to large-scale problems. Therefore, the forward and reactive strategies can better handle the uncertainty of airport ground protection services as they can simultaneously guide the allocation and utilization of airport ground protection resources.

Suggested Citation

  • Xu, Guoning & Lin, Yupeng & Wu, Zhiying & Chen, Qingxin & Mao, Ning, 2023. "Research on the scheduling method of ground resource under uncertain arrival time," Operations Research Perspectives, Elsevier, vol. 11(C).
  • Handle: RePEc:eee:oprepe:v:11:y:2023:i:c:s221471602300026x
    DOI: 10.1016/j.orp.2023.100291
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S221471602300026X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.orp.2023.100291?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    2. Schmidt, Michael & Paul, Annika & Cole, Mara & Ploetner, Kay Olaf, 2016. "Challenges for ground operations arising from aircraft concepts using alternative energy," Journal of Air Transport Management, Elsevier, vol. 56(PB), pages 107-117.
    3. Liang, Jinpeng & Wu, Jianjun & Gao, Ziyou & Sun, Huijun & Yang, Xin & Lo, Hong K., 2019. "Bus transit network design with uncertainties on the basis of a metro network: A two-step model framework," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 115-138.
    4. Zhao, Peixin & Han, Xue & Wan, Di, 2021. "Evaluation of the airport ferry vehicle scheduling based on network maximum flow model," Omega, Elsevier, vol. 99(C).
    5. Xichao Su & Wei Han & Yu Wu & Yong Zhang & Jie Liu, 2018. "A Proactive Robust Scheduling Method for Aircraft Carrier Flight Deck Operations with Stochastic Durations," Complexity, Hindawi, vol. 2018, pages 1-38, November.
    6. Li, Jingpeng & Bai, Ruibin & Shen, Yindong & Qu, Rong, 2015. "Search with evolutionary ruin and stochastic rebuild: A theoretic framework and a case study on exam timetabling," European Journal of Operational Research, Elsevier, vol. 242(3), pages 798-806.
    7. Kang, Liujiang & Meng, Qiang & Tan, Kok Choon, 2020. "Tugboat scheduling under ship arrival and tugging process time uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. JANSSENS, Jochen & DE CORTE, Annelies & SÖRENSEN, Kenneth, 2016. "Water distribution network design optimisation with respect to reliability," Working Papers 2016007, University of Antwerp, Faculty of Business and Economics.
    2. Bach, Lukas & Hasle, Geir & Schulz, Christian, 2019. "Adaptive Large Neighborhood Search on the Graphics Processing Unit," European Journal of Operational Research, Elsevier, vol. 275(1), pages 53-66.
    3. Arpan Rijal & Marco Bijvank & Asvin Goel & René de Koster, 2021. "Workforce Scheduling with Order-Picking Assignments in Distribution Facilities," Transportation Science, INFORMS, vol. 55(3), pages 725-746, May.
    4. Martins, Sara & Ostermeier, Manuel & Amorim, Pedro & Hübner, Alexander & Almada-Lobo, Bernardo, 2019. "Product-oriented time window assignment for a multi-compartment vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 276(3), pages 893-909.
    5. Dessouky, Maged M & Shao, Yihuan E, 2017. "Routing Strategies for Efficient Deployment of Alternative Fuel Vehicles for Freight Delivery," Institute of Transportation Studies, Working Paper Series qt0nj024qn, Institute of Transportation Studies, UC Davis.
    6. Mo, Pengli & Yao, Yu & D’Ariano, Andrea & Liu, Zhiyuan, 2023. "The vehicle routing problem with underground logistics: Formulation and algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    7. Baumeister, Stefan & Leung, Abraham & Ryley, Tim, 2020. "The emission reduction potentials of First Generation Electric Aircraft (FGEA) in Finland," Journal of Transport Geography, Elsevier, vol. 85(C).
    8. SteadieSeifi, M. & Dellaert, N.P. & Nuijten, W. & Van Woensel, T., 2017. "A metaheuristic for the multimodal network flow problem with product quality preservation and empty repositioning," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 321-344.
    9. Mahmoud Owais & Abdou S. Ahmed & Ghada S. Moussa & Ahmed A. Khalil, 2020. "An Optimal Metro Design for Transit Networks in Existing Square Cities Based on Non-Demand Criterion," Sustainability, MDPI, vol. 12(22), pages 1-28, November.
    10. repec:dar:wpaper:62383 is not listed on IDEAS
    11. Parvez Farazi, Nahid & Zou, Bo & Tulabandhula, Theja, 2022. "Dynamic On-Demand Crowdshipping Using Constrained and Heuristics-Embedded Double Dueling Deep Q-Network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    12. He, Dongdong & Guan, Wei, 2023. "Promoting service quality with incentive contracts in rural bus integrated passenger-freight service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    13. Jone R. Hansen & Kjetil Fagerholt & Magnus Stålhane & Jørgen G. Rakke, 2020. "An adaptive large neighborhood search heuristic for the planar storage location assignment problem: application to stowage planning for Roll-on Roll-off ships," Journal of Heuristics, Springer, vol. 26(6), pages 885-912, December.
    14. Su, Yue & Dupin, Nicolas & Parragh, Sophie N. & Puchinger, Jakob, 2024. "A Branch-and-Price algorithm for the electric autonomous Dial-A-Ride Problem," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
    15. Arda, Yasemin & Cattaruzza, Diego & François, Véronique & Ogier, Maxime, 2024. "Home chemotherapy delivery: An integrated production scheduling and multi-trip vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 317(2), pages 468-486.
    16. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.
    17. J. Álvaro Gómez-Pantoja & M. Angélica Salazar-Aguilar & José Luis González-Velarde, 2021. "The food bank resource allocation problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 266-286, April.
    18. Li, Yuan & Chen, Haoxun & Prins, Christian, 2016. "Adaptive large neighborhood search for the pickup and delivery problem with time windows, profits, and reserved requests," European Journal of Operational Research, Elsevier, vol. 252(1), pages 27-38.
    19. Chen, Enming & Zhou, Zhongbao & Li, Ruiyang & Chang, Zhongxiang & Shi, Jianmai, 2024. "The multi-fleet delivery problem combined with trucks, tricycles, and drones for last-mile logistics efficiency requirements under multiple budget constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 187(C).
    20. Raeesi, Ramin & Zografos, Konstantinos G., 2020. "The electric vehicle routing problem with time windows and synchronised mobile battery swapping," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 101-129.
    21. Masson, Renaud & Lahrichi, Nadia & Rousseau, Louis-Martin, 2016. "A two-stage solution method for the annual dairy transportation problem," European Journal of Operational Research, Elsevier, vol. 251(1), pages 36-43.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:oprepe:v:11:y:2023:i:c:s221471602300026x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/operations-research-perspectives .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.