IDEAS home Printed from https://ideas.repec.org/a/eee/oprepe/v10y2023ics2214716023000076.html
   My bibliography  Save this article

A numerical comparative study of completion methods for pairwise comparison matrices

Author

Listed:
  • Tekile, Hailemariam Abebe
  • Brunelli, Matteo
  • Fedrizzi, Michele

Abstract

In the context of some multi-criteria decision-making methods, such as the Analytic Hierarchy Process, an expert is required to compare entities, e.g. alternatives and criteria. However, often, for various reasons, the expert cannot provide judgments on all pairs of entities. For these cases, several completion methods have been proposed in the literature to estimate the missing values of pairwise comparison matrices. In this paper, we study the similarity of eleven completion methods on the basis of numerical simulations and hierarchical clustering. We perform simulations for matrices of different orders considering various numbers of missing comparisons. Finally, the results suggest the existence of a cluster of five extremely similar methods, and a method significantly dissimilar from all the others.

Suggested Citation

  • Tekile, Hailemariam Abebe & Brunelli, Matteo & Fedrizzi, Michele, 2023. "A numerical comparative study of completion methods for pairwise comparison matrices," Operations Research Perspectives, Elsevier, vol. 10(C).
  • Handle: RePEc:eee:oprepe:v:10:y:2023:i:c:s2214716023000076
    DOI: 10.1016/j.orp.2023.100272
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2214716023000076
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.orp.2023.100272?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fichtner, John, 1986. "On deriving priority vectors from matrices of pairwise comparisons," Socio-Economic Planning Sciences, Elsevier, vol. 20(6), pages 341-345.
    2. Matteo Brunelli & Michele Fedrizzi, 2015. "Axiomatic properties of inconsistency indices for pairwise comparisons," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(1), pages 1-15, January.
    3. Ágoston, Kolos Csaba & Csató, László, 2022. "Inconsistency thresholds for incomplete pairwise comparison matrices," Omega, Elsevier, vol. 108(C).
    4. Szádoczki, Zsombor & Bozóki, Sándor & Tekile, Hailemariam Abebe, 2022. "Filling in pattern designs for incomplete pairwise comparison matrices: (Quasi-)regular graphs with minimal diameter," Omega, Elsevier, vol. 107(C).
    5. Fedrizzi, Michele & Giove, Silvio, 2007. "Incomplete pairwise comparison and consistency optimization," European Journal of Operational Research, Elsevier, vol. 183(1), pages 303-313, November.
    6. Kun Chen & Gang Kou & J. Michael Tarn & Yan Song, 2015. "Bridging the gap between missing and inconsistent values in eliciting preference from pairwise comparison matrices," Annals of Operations Research, Springer, vol. 235(1), pages 155-175, December.
    7. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    8. Carmone, Frank J. & Kara, Ali & Zanakis, Stelios H., 1997. "A Monte Carlo investigation of incomplete pairwise comparison matrices in AHP," European Journal of Operational Research, Elsevier, vol. 102(3), pages 538-553, November.
    9. Stephen Johnson, 1967. "Hierarchical clustering schemes," Psychometrika, Springer;The Psychometric Society, vol. 32(3), pages 241-254, September.
    10. Csató, László, 2019. "A characterization of the Logarithmic Least Squares Method," European Journal of Operational Research, Elsevier, vol. 276(1), pages 212-216.
    11. Xinyi Zhou & Yong Hu & Yong Deng & Felix T. S. Chan & Alessio Ishizaka, 2018. "A DEMATEL-based completion method for incomplete pairwise comparison matrix in AHP," Annals of Operations Research, Springer, vol. 271(2), pages 1045-1066, December.
    12. Matteo Brunelli, 2017. "Studying a set of properties of inconsistency indices for pairwise comparisons," Annals of Operations Research, Springer, vol. 248(1), pages 143-161, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zsombor Szádoczki & Sándor Bozóki & Patrik Juhász & Sergii V. Kadenko & Vitaliy Tsyganok, 2023. "Incomplete pairwise comparison matrices based on graphs with average degree approximately 3," Annals of Operations Research, Springer, vol. 326(2), pages 783-807, July.
    2. Liu, Fang & Zou, Shu-Cai & Li, Qing, 2020. "Deriving priorities from pairwise comparison matrices with a novel consistency index," Applied Mathematics and Computation, Elsevier, vol. 374(C).
    3. Entani, Tomoe & Sugihara, Kazutomi, 2012. "Uncertainty index based interval assignment by Interval AHP," European Journal of Operational Research, Elsevier, vol. 219(2), pages 379-385.
    4. Chao, Xiangrui & Kou, Gang & Li, Tie & Peng, Yi, 2018. "Jie Ke versus AlphaGo: A ranking approach using decision making method for large-scale data with incomplete information," European Journal of Operational Research, Elsevier, vol. 265(1), pages 239-247.
    5. Pietro Amenta & Alessio Ishizaka & Antonio Lucadamo & Gabriella Marcarelli & Vijay Vyas, 2020. "Computing a common preference vector in a complex multi-actor and multi-group decision system in Analytic Hierarchy Process context," Annals of Operations Research, Springer, vol. 284(1), pages 33-62, January.
    6. Fernandes, Rosário & Furtado, Susana, 2022. "Efficiency of the principal eigenvector of some triple perturbed consistent matrices," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1007-1015.
    7. Csató, László, 2019. "A characterization of the Logarithmic Least Squares Method," European Journal of Operational Research, Elsevier, vol. 276(1), pages 212-216.
    8. László Csató, 2019. "Axiomatizations of inconsistency indices for triads," Annals of Operations Research, Springer, vol. 280(1), pages 99-110, September.
    9. Matteo Brunelli, 2017. "Studying a set of properties of inconsistency indices for pairwise comparisons," Annals of Operations Research, Springer, vol. 248(1), pages 143-161, January.
    10. Bice Cavallo, 2019. "Coherent weights for pairwise comparison matrices and a mixed-integer linear programming problem," Journal of Global Optimization, Springer, vol. 75(1), pages 143-161, September.
    11. Liang, Fuqi & Brunelli, Matteo & Rezaei, Jafar, 2020. "Consistency issues in the best worst method: Measurements and thresholds," Omega, Elsevier, vol. 96(C).
    12. Pérez-Mesa, Juan Carlos & Galdeano-Gómez, Emilio & Salinas Andújar, Jose A., 2012. "Logistics network and externalities for short sea transport: An analysis of horticultural exports from southeast Spain," Transport Policy, Elsevier, vol. 24(C), pages 188-198.
    13. Lundy, Michele & Siraj, Sajid & Greco, Salvatore, 2017. "The mathematical equivalence of the “spanning tree” and row geometric mean preference vectors and its implications for preference analysis," European Journal of Operational Research, Elsevier, vol. 257(1), pages 197-208.
    14. József Temesi, 2019. "An interactive approach to determine the elements of a pairwise comparison matrix," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(2), pages 533-549, June.
    15. Daji Ergu & Gang Kou, 2012. "Questionnaire design improvement and missing item scores estimation for rapid and efficient decision making," Annals of Operations Research, Springer, vol. 197(1), pages 5-23, August.
    16. Wu, Zhibin & Huang, Shuai & Xu, Jiuping, 2019. "Multi-stage optimization models for individual consistency and group consensus with preference relations," European Journal of Operational Research, Elsevier, vol. 275(1), pages 182-194.
    17. Paul Thaddeus Kazibudzki, 2016. "An examination of performance relations among selected consistency measures for simulated pairwise judgments," Annals of Operations Research, Springer, vol. 244(2), pages 525-544, September.
    18. Lin, Chang-Chun, 2007. "A revised framework for deriving preference values from pairwise comparison matrices," European Journal of Operational Research, Elsevier, vol. 176(2), pages 1145-1150, January.
    19. Lai, Po‐Lin & Potter, Andrew & Beynon, Malcolm & Beresford, Anthony, 2015. "Evaluating the efficiency performance of airports using an integrated AHP/DEA-AR technique," Transport Policy, Elsevier, vol. 42(C), pages 75-85.
    20. Matteo Brunelli & Michele Fedrizzi, 2019. "A general formulation for some inconsistency indices of pairwise comparisons," Annals of Operations Research, Springer, vol. 274(1), pages 155-169, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:oprepe:v:10:y:2023:i:c:s2214716023000076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/operations-research-perspectives .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.