IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v78y2008i1p40-56.html
   My bibliography  Save this article

Using simulation and multi-criteria methods to provide robust solutions to dispatching problems in a flow shop with multiple processors

Author

Listed:
  • Kuo, Yiyo
  • Yang, Taho
  • Cho, Chiwoon
  • Tseng, Yao-Ching

Abstract

Dispatching rules are important to the performance of a manufacturing system. Selective applications of different priority rules at different processing stages in a multiple workstation manufacturing system have a positive impact on shop performance. This type of problem is a combinatorial dispatching decision. However, no dispatching rule can consistently produce better performance than all other rules under a variety of operating conditions and criteria. It is the purpose of this study to provide a robust solution for a dispatching decision that will have ‘good’ performance under different operating scenarios. In this paper a simulation case of a flow shop with multiple processors is proposed, specifically a multi-layer ceramic capacitor manufacturing system. Two multiple criteria decision-making methods – techniques for order preference by similarity to ideal solution (TOPSIS) and an analytic hierarchy process (AHP) – in combination with Taguchi orthogonal array are used to find the most suitable dispatching rule for every workstation. The results show that for 15 production scenarios and 4 criteria this combinatorial dispatching rule is robust, in the sense that it outperforms other commonly employed strategies.

Suggested Citation

  • Kuo, Yiyo & Yang, Taho & Cho, Chiwoon & Tseng, Yao-Ching, 2008. "Using simulation and multi-criteria methods to provide robust solutions to dispatching problems in a flow shop with multiple processors," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(1), pages 40-56.
  • Handle: RePEc:eee:matcom:v:78:y:2008:i:1:p:40-56
    DOI: 10.1016/j.matcom.2007.06.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475407002017
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2007.06.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Valerie Botta-Genoulaz, 2000. "Hybrid flow shop scheduling with precedence constraints and time lags to minimize maximum lateness," Post-Print hal-00398647, HAL.
    2. Petroni, Alberto & Rizzi, Antonio, 2002. "A fuzzy logic based methodology to rank shop floor dispatching rules," International Journal of Production Economics, Elsevier, vol. 76(1), pages 99-108, March.
    3. Brah, Shaukat A. & Loo, Luan Luan, 1999. "Heuristics for scheduling in a flow shop with multiple processors," European Journal of Operational Research, Elsevier, vol. 113(1), pages 113-122, February.
    4. Sugihara, Kazutomi & Ishii, Hiroaki & Tanaka, Hideo, 2004. "Interval priorities in AHP by interval regression analysis," European Journal of Operational Research, Elsevier, vol. 158(3), pages 745-754, November.
    5. Yang, Taho & Chen, Mu-Chen & Hung, Chih-Ching, 2007. "Multiple attribute decision-making methods for the dynamic operator allocation problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 73(5), pages 285-299.
    6. Arbel, Ami & Vargas, Luis G., 1993. "Preference simulation and preference programming: robustness issues in priority derivation," European Journal of Operational Research, Elsevier, vol. 69(2), pages 200-209, September.
    7. Yang, Taho & Kuo, Yiyo & Cho, Chiwoon, 2007. "A genetic algorithms simulation approach for the multi-attribute combinatorial dispatching decision problem," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1859-1873, February.
    8. Arbel, Ami, 1989. "Approximate articulation of preference and priority derivation," European Journal of Operational Research, Elsevier, vol. 43(3), pages 317-326, December.
    9. Botta-Genoulaz, Valerie, 2000. "Hybrid flow shop scheduling with precedence constraints and time lags to minimize maximum lateness," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 101-111, March.
    10. Saaty, Thomas L. & Vargas, Luis G., 1987. "Uncertainty and rank order in the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 32(1), pages 107-117, October.
    11. Greco, Salvatore & Matarazzo, Benedetto & Slowinski, Roman, 2002. "Rough sets methodology for sorting problems in presence of multiple attributes and criteria," European Journal of Operational Research, Elsevier, vol. 138(2), pages 247-259, April.
    12. Sarper, H. & Henry, M. C., 1996. "Combinatorial evaluation of six dispatching rules in a dynamic two-machine flow shop," Omega, Elsevier, vol. 24(1), pages 73-81, February.
    13. Rajendran, Chandrasekharan & Holthaus, Oliver, 1999. "A comparative study of dispatching rules in dynamic flowshops and jobshops," European Journal of Operational Research, Elsevier, vol. 116(1), pages 156-170, July.
    14. Yang, Taho & Chou, Pohung, 2005. "Solving a multiresponse simulation-optimization problem with discrete variables using a multiple-attribute decision-making method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 68(1), pages 9-21.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khalil Tliba & Thierno M. L. Diallo & Olivia Penas & Romdhane Ben Khalifa & Noureddine Ben Yahia & Jean-Yves Choley, 2023. "Digital twin-driven dynamic scheduling of a hybrid flow shop," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2281-2306, June.
    2. Ruiz, Rubén & Vázquez-Rodríguez, José Antonio, 2010. "The hybrid flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 205(1), pages 1-18, August.
    3. Taho Yang & Shin-Yi Lin & Yu-Hsiu Hung & Chung-Chien Hong, 2022. "A Study on the Optimization of In-Process Inspection Procedure for Active Pharmaceutical Ingredients Manufacturing Process," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
    4. Muhammet Gul & Erkan Celik & Alev Taskin Gumus & Ali Fuat Guneri, 2016. "Emergency department performance evaluation by an integrated simulation and interval type-2 fuzzy MCDM-based scenario analysis," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 10(2), pages 196-223.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Taho & Kuo, Yiyo & Cho, Chiwoon, 2007. "A genetic algorithms simulation approach for the multi-attribute combinatorial dispatching decision problem," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1859-1873, February.
    2. Wang, Ying-Ming & Elhag, Taha M.S., 2007. "A goal programming method for obtaining interval weights from an interval comparison matrix," European Journal of Operational Research, Elsevier, vol. 177(1), pages 458-471, February.
    3. Ruiz, Rubén & Vázquez-Rodríguez, José Antonio, 2010. "The hybrid flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 205(1), pages 1-18, August.
    4. Mikhailov, L., 2004. "A fuzzy approach to deriving priorities from interval pairwise comparison judgements," European Journal of Operational Research, Elsevier, vol. 159(3), pages 687-704, December.
    5. Hahn, Eugene D., 2006. "Link function selection in stochastic multicriteria decision making models," European Journal of Operational Research, Elsevier, vol. 172(1), pages 86-100, July.
    6. Haines, Linda M., 1998. "A statistical approach to the analytic hierarchy process with interval judgements. (I). Distributions on feasible regions," European Journal of Operational Research, Elsevier, vol. 110(1), pages 112-125, October.
    7. Finan, J. S. & Hurley, W. J., 1999. "Transitive calibration of the AHP verbal scale," European Journal of Operational Research, Elsevier, vol. 112(2), pages 367-372, January.
    8. Lipovetsky, Stan & Tishler, Asher, 1999. "Interval estimation of priorities in the AHP," European Journal of Operational Research, Elsevier, vol. 114(1), pages 153-164, April.
    9. Islam, R. & Biswal, M. P. & Alam, S. S., 1997. "Preference programming and inconsistent interval judgments," European Journal of Operational Research, Elsevier, vol. 97(1), pages 53-62, February.
    10. Guo, Min & Yang, Jian-Bo & Chin, Kwai-Sang & Wang, Hongwei, 2007. "Evidential reasoning based preference programming for multiple attribute decision analysis under uncertainty," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1294-1312, November.
    11. Zeshui Xu & Xiaoqiang Cai, 2014. "Deriving Weights from Interval Multiplicative Preference Relations in Group Decision Making," Group Decision and Negotiation, Springer, vol. 23(4), pages 695-713, July.
    12. Vetschera, Rudolf, 1996. "Multi-criteria agency theory," Discussion Papers, Series I 280, University of Konstanz, Department of Economics.
    13. Quadt, Daniel & Kuhn, Heinrich, 2007. "A taxonomy of flexible flow line scheduling procedures," European Journal of Operational Research, Elsevier, vol. 178(3), pages 686-698, May.
    14. Ahn, Byeong Seok, 2017. "The analytic hierarchy process with interval preference statements," Omega, Elsevier, vol. 67(C), pages 177-185.
    15. Van den Honert, R. C., 1998. "Stochastic group preference modelling in the multiplicative AHP: A model of group consensus," European Journal of Operational Research, Elsevier, vol. 110(1), pages 99-111, October.
    16. Xu, Dong-Ling & Yang, Jian-Bo & Wang, Ying-Ming, 2006. "The evidential reasoning approach for multi-attribute decision analysis under interval uncertainty," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1914-1943, November.
    17. Vetschera, Rudolf, 1996. "A recursive algorithm for volume-based sensitivity analysis of linear decision models," Discussion Papers, Series I 279, University of Konstanz, Department of Economics.
    18. Ahn, Byeong Seok & Park, Haechurl, 2014. "Establishing dominance between strategies with interval judgments of state probabilities," Omega, Elsevier, vol. 49(C), pages 53-59.
    19. Podinovski, Vladislav V., 2007. "Interval articulation of superiority and precise elicitation of priorities," European Journal of Operational Research, Elsevier, vol. 180(1), pages 406-417, July.
    20. Virgilio López-Morales, 2018. "A Reliable Method for Consistency Improving of Interval Multiplicative Preference Relations Expressed under Uncertainty," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(05), pages 1561-1585, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:78:y:2008:i:1:p:40-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.