IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v224y2024ipap50-62.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Photovoltaic module series resistance identification at its maximum power production

Author

Listed:
  • Lappalainen, Kari
  • Piliougine, Michel
  • Valkealahti, Seppo
  • Spagnuolo, Giovanni

Abstract

Analysis of measured current–voltage curves offers a cost-effective option for online condition monitoring of photovoltaic (PV) modules. The current–voltage curves of PV modules can be modeled accurately using the well-known electrical single-diode model. In practical applications, condition monitoring should be based on measurements performed near the maximum power point (MPP) by affecting PV power production negligibly. The series resistance is the most important single-diode model parameter in assessing the condition of PV modules; this paper proposes a novel method for its determination by using measurements acquired near the MPP only. The proposed method can be used with any series resistance identification procedure based on current–voltage curve measurements. The proposed method is experimentally validated using current–voltage curves of two PV modules measured in Malaga, Spain. This study allows to assess that the series resistance can be accurately determined from measurements performed near the MPP. Especially the results obtained with an ISOFOTON ISF-145 PV module are very promising: the scaled series resistances obtained from measurements done without lowering the PV power more than 2% of the maximum power differ on the average by no more than 2% of the series resistances obtained from the whole current–voltage curves.

Suggested Citation

  • Lappalainen, Kari & Piliougine, Michel & Valkealahti, Seppo & Spagnuolo, Giovanni, 2024. "Photovoltaic module series resistance identification at its maximum power production," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 224(PA), pages 50-62.
  • Handle: RePEc:eee:matcom:v:224:y:2024:i:pa:p:50-62
    DOI: 10.1016/j.matcom.2023.05.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475423002409
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.05.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:224:y:2024:i:pa:p:50-62. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.