IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v172y2020icp134-158.html
   My bibliography  Save this article

Delay induced multiple stability switch and chaos in a predator–prey model with fear effect

Author

Listed:
  • Panday, Pijush
  • Samanta, Sudip
  • Pal, Nikhil
  • Chattopadhyay, Joydev

Abstract

We propose a delayed predator–prey model with fear in the prey population. We consider that the growth rate of the prey population is suppressed due to the fear of predators. It is also considered that there is a time lag between the time of perceiving predator signals through chemical and/or vocal cues and the changes in life-history and behavioral responses in the prey population. We study boundedness, persistence, local and global behavior of the delayed system. Moreover, the Hopf-bifurcation analysis around the interior equilibrium with respect to the delay parameter is established. The stability and direction of Hopf-bifurcation are also studied. It is observed that fear induced delay has both stabilizing and destabilizing effects depending on the magnitude of the delay parameter. We observe that for the gradual increase of the magnitude of delay, the system dynamics switches multiple times between stable focus and limit cycle oscillations. However, for a higher value of the delay parameter, the system ultimately enters into the chaotic regime. The delay system also exhibits node-cycle bi-stability behavior between the interior equilibrium point and stable limit cycle. Numerical simulations are also performed to validate analytical findings.

Suggested Citation

  • Panday, Pijush & Samanta, Sudip & Pal, Nikhil & Chattopadhyay, Joydev, 2020. "Delay induced multiple stability switch and chaos in a predator–prey model with fear effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 172(C), pages 134-158.
  • Handle: RePEc:eee:matcom:v:172:y:2020:i:c:p:134-158
    DOI: 10.1016/j.matcom.2019.12.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475419303751
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2019.12.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shuang Guo & Weihua Jiang, 2012. "Hopf Bifurcation Analysis on General Gause-Type Predator-Prey Models with Delay," Abstract and Applied Analysis, Hindawi, vol. 2012, pages 1-17, March.
    2. Fangyuan Hua & Kathryn E. Sieving & Robert J. Fletcher & Chloe A. Wright, 2014. "Increased perception of predation risk to adults and offspring alters avian reproductive strategy and performance," Behavioral Ecology, International Society for Behavioral Ecology, vol. 25(3), pages 509-519.
    3. Yakui Xue & Xiaoqing Wang, 2012. "Stability and Local Hopf Bifurcation for a Predator-Prey Model with Delay," Discrete Dynamics in Nature and Society, Hindawi, vol. 2012, pages 1-17, July.
    4. Greenhalgh, David & Rana, Sourav & Samanta, Sudip & Sardar, Tridip & Bhattacharya, Sabyasachi & Chattopadhyay, Joydev, 2015. "Awareness programs control infectious disease – Multiple delay induced mathematical model," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 539-563.
    5. Justin P. Suraci & Michael Clinchy & Lawrence M. Dill & Devin Roberts & Liana Y. Zanette, 2016. "Fear of large carnivores causes a trophic cascade," Nature Communications, Nature, vol. 7(1), pages 1-7, April.
    6. Roper Roy E. & Goodzey C., 2004. "Ecology of Fear," Journal of Homeland Security and Emergency Management, De Gruyter, vol. 1(2), pages 1-7, January.
    7. Gan, Qintao & Xu, Rui & Yang, Pinghua, 2009. "Bifurcation and chaos in a ratio-dependent predator–prey system with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1883-1895.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dubey, Balram & Sajan, & Kumar, Ankit, 2021. "Stability switching and chaos in a multiple delayed prey–predator model with fear effect and anti-predator behavior," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 164-192.
    2. Liu, He & Dai, Chuanjun & Yu, Hengguo & Guo, Qing & Li, Jianbing & Hao, Aimin & Kikuchi, Jun & Zhao, Min, 2023. "Dynamics of a stochastic non-autonomous phytoplankton–zooplankton system involving toxin-producing phytoplankton and impulsive perturbations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 368-386.
    3. Yuanfu Shao & Weili Kong, 2022. "A Predator–Prey Model with Beddington–DeAngelis Functional Response and Multiple Delays in Deterministic and Stochastic Environments," Mathematics, MDPI, vol. 10(18), pages 1-25, September.
    4. Sahu, S.R. & Raw, S.N., 2023. "Appearance of chaos and bi-stability in a fear induced delayed predator–prey system: A mathematical modeling study," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    5. Seralan Vinoth & R. Vadivel & Nien-Tsu Hu & Chin-Sheng Chen & Nallappan Gunasekaran, 2023. "Bifurcation Analysis in a Harvested Modified Leslie–Gower Model Incorporated with the Fear Factor and Prey Refuge," Mathematics, MDPI, vol. 11(14), pages 1-25, July.
    6. Li, Yajing & He, Mengxin & Li, Zhong, 2022. "Dynamics of a ratio-dependent Leslie–Gower predator–prey model with Allee effect and fear effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 417-439.
    7. Zhenglong Chen & Shunjie Li & Xuebing Zhang, 2022. "Analysis of a Delayed Reaction-Diffusion Predator–Prey System with Fear Effect and Anti-Predator Behaviour," Mathematics, MDPI, vol. 10(18), pages 1-20, September.
    8. Shao, Yuanfu, 2022. "Global stability of a delayed predator–prey system with fear and Holling-type II functional response in deterministic and stochastic environments," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 65-77.
    9. Dingyong Bai & Xiaoxuan Zhang, 2022. "Dynamics of a Predator–Prey Model with the Additive Predation in Prey," Mathematics, MDPI, vol. 10(4), pages 1-30, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiwari, Vandana & Tripathi, Jai Prakash & Mishra, Swati & Upadhyay, Ranjit Kumar, 2020. "Modeling the fear effect and stability of non-equilibrium patterns in mutually interfering predator–prey systems," Applied Mathematics and Computation, Elsevier, vol. 371(C).
    2. Hossain, Mainul & Pal, Nikhil & Samanta, Sudip, 2020. "Impact of fear on an eco-epidemiological model," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    3. Sahu, S.R. & Raw, S.N., 2023. "Appearance of chaos and bi-stability in a fear induced delayed predator–prey system: A mathematical modeling study," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    4. Banamali Maji & Samares Pal, 2022. "Impact of fear effect exerted by Pterois volitans on a coral reef ecosystem with parrotfish refuge and harvesting of both fishes," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2267-2287, February.
    5. Talal Daghriri & Michael Proctor & Sarah Matthews, 2022. "Evolution of Select Epidemiological Modeling and the Rise of Population Sentiment Analysis: A Literature Review and COVID-19 Sentiment Illustration," IJERPH, MDPI, vol. 19(6), pages 1-20, March.
    6. Liu, Junli & Liu, Bairu & Lv, Pan & Zhang, Tailei, 2021. "An eco-epidemiological model with fear effect and hunting cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    7. Basir, Fahad Al & Ray, Santanu & Venturino, Ezio, 2018. "Role of media coverage and delay in controlling infectious diseases: A mathematical model," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 372-385.
    8. Iain J. Gordon & F. Javier Pérez-Barbería & Adrian D. Manning, 2021. "Rewilding Lite: Using Traditional Domestic Livestock to Achieve Rewilding Outcomes," Sustainability, MDPI, vol. 13(6), pages 1-15, March.
    9. Ling, Li & Wang, Weiming, 2009. "Dynamics of a Ivlev-type predator–prey system with constant rate harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2139-2153.
    10. Fernando A. Campos & Linda M. Fedigan, 2014. "Spatial ecology of perceived predation risk and vigilance behavior in white-faced capuchins," Behavioral Ecology, International Society for Behavioral Ecology, vol. 25(3), pages 477-486.
    11. Hu, Guang-Ping & Li, Wan-Tong & Yan, Xiang-Ping, 2009. "Hopf bifurcations in a predator–prey system with multiple delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1273-1285.
    12. Nicolas Treich, 2022. "The Dasgupta Review and the Problem of Anthropocentrism," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(4), pages 973-997, December.
    13. Li, Danyang & Liu, Hua & Zhang, Haotian & Wei, Yumei, 2023. "Influence of multiple delays mechanisms on predator–prey model with Allee effect," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    14. Weike Zhou & Yanni Xiao & Jane Marie Heffernan, 2019. "Optimal media reporting intensity on mitigating spread of an emerging infectious disease," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-18, March.
    15. Kaur, Rajinder Pal & Sharma, Amit & Sharma, Anuj Kumar, 2021. "Impact of fear effect on plankton-fish system dynamics incorporating zooplankton refuge," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    16. Wang, Zhen & Xie, Yingkang & Lu, Junwei & Li, Yuxia, 2019. "Stability and bifurcation of a delayed generalized fractional-order prey–predator model with interspecific competition," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 360-369.
    17. Ghosh, Joydev & Sahoo, Banshidhar & Poria, Swarup, 2017. "Prey-predator dynamics with prey refuge providing additional food to predator," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 110-119.
    18. S. Périquet & L. Todd-Jones & M. Valeix & B. Stapelkamp & N. Elliot & M. Wijers & O. Pays & D. Fortin & H. Madzikanda & H. Fritz & D. W. Macdonald & A. J. Loveridge, 2012. "Influence of immediate predation risk by lions on the vigilance of prey of different body size," Behavioral Ecology, International Society for Behavioral Ecology, vol. 23(5), pages 970-976.
    19. LaRue, Michelle A. & Nielsen, Clayton K., 2016. "Population viability of recolonizing cougars in midwestern North America," Ecological Modelling, Elsevier, vol. 321(C), pages 121-129.
    20. Jin, Xihua & Jia, Jianwen, 2020. "Qualitative study of a stochastic SIRS epidemic model with information intervention," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:172:y:2020:i:c:p:134-158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.