IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v74y2021ics030142072100310x.html
   My bibliography  Save this article

Exploring the relation between production factors, ore grades, and life of mine for forecasting mining capital cost through a novel cascade forward neural network-based salp swarm optimization model

Author

Listed:
  • Zheng, Xiaolei
  • Nguyen, Hoang
  • Bui, Xuan-Nam

Abstract

This paper aims at exploring the relationship between production factors, ore grades, and life of mine for forecasting mining capital cost (MCC) for open pit mining projects. Accordingly, the relationship between annual mine and mill production (MineAP, MillAP), stripping ratio (SR), reserve mean grade (RMG), the life of mine (LOM), and MCC of 80 open pit mining projects were investigated and thoroughly evaluated. The dataset was then divided into two sections, with 56 observations used to develop the forecast models. The remaining 24 observations were used to test the accuracy of the developed models. Subsequently, the cascade feedforward neural network (CFNN) was developed to forecast MCC based on the influential parameters. In order to improve the accuracy of the CFNN model, the salp swarm optimization (SalpSO) algorithm was applied to train the CFNN model and optimize the weights of the model, called the SalpSO-CFNN model. The benchmark models which were developed in the previous studies, such as support vector machine (SVM), classification and regression tree (CART), and multiple layers perceptron (MLP) neural network, were also developed in this study to compare with the proposed SalpSO-CFNN model in terms of MCC forecast. The results revealed that production factors, ore grades, and LOM are closely related to MCC, and they are statistically significant. The forecast results also indicated that the proposed novel SalpSO-CFNN model provided a good accuracy with a mean absolute error (MAE) of 179.567, root-mean-squared error (RMSE) of 248.401, and determination coefficient (R2) of 0.980. This result is higher by 18% compared with the CART model and 2–6% compared with the remaining forecast models. A sensitivity analysis also indicated that MineAP, MillAP are the most influential parameters on the forecast of MCC, and they should be specially taken into account when forecasting MCC of open pit mining projects.

Suggested Citation

  • Zheng, Xiaolei & Nguyen, Hoang & Bui, Xuan-Nam, 2021. "Exploring the relation between production factors, ore grades, and life of mine for forecasting mining capital cost through a novel cascade forward neural network-based salp swarm optimization model," Resources Policy, Elsevier, vol. 74(C).
  • Handle: RePEc:eee:jrpoli:v:74:y:2021:i:c:s030142072100310x
    DOI: 10.1016/j.resourpol.2021.102300
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142072100310X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2021.102300?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Hong & Nguyen, Hoang & Bui, Xuan-Nam & Pradhan, Biswajeet & Mai, Ngoc-Luan & Vu, Diep-Anh, 2021. "Proposing two novel hybrid intelligence models for forecasting copper price based on extreme learning machine and meta-heuristic algorithms," Resources Policy, Elsevier, vol. 73(C).
    2. Del Castillo, Maria Fernanda & Dimitrakopoulos, Roussos, 2016. "A multivariate destination policy for geometallurgical variables in mineral value chains using coalition-formation clustering," Resources Policy, Elsevier, vol. 50(C), pages 322-332.
    3. Sun, Xiaojun & Lei, Yalin, 2021. "Research on financial early warning of mining listed companies based on BP neural network model," Resources Policy, Elsevier, vol. 73(C).
    4. Lee, Seunggyu, 2021. "Monte Carlo simulation using support vector machine and kernel density for failure probability estimation," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    5. Nourali, Hamidreza & Osanloo, Morteza, 2019. "Mining capital cost estimation using Support Vector Regression (SVR)," Resources Policy, Elsevier, vol. 62(C), pages 527-540.
    6. Asif Khan & Christian Niemann-Delius, 2014. "Production Scheduling of Open Pit Mines Using Particle Swarm Optimization Algorithm," Advances in Operations Research, Hindawi, vol. 2014, pages 1-9, November.
    7. Franco-Sepúlveda, Giovanni & Del Rio-Cuervo, Juan Camilo & Pachón-Hernández, María Angélica, 2019. "State of the art about metaheuristics and artificial neural networks applied to open pit mining," Resources Policy, Elsevier, vol. 60(C), pages 125-133.
    8. Zhang, Hong & Nguyen, Hoang & Vu, Diep-Anh & Bui, Xuan-Nam & Pradhan, Biswajeet, 2021. "Forecasting monthly copper price: A comparative study of various machine learning-based methods," Resources Policy, Elsevier, vol. 73(C).
    9. R. H. E. M. Koppelaar & H. Koppelaar, 2016. "The Ore Grade and Depth Influence on Copper Energy Inputs," Biophysical Economics and Resource Quality, Springer, vol. 1(2), pages 1-16, December.
    10. Adolfo Crespo Márquez & Antonio de la Fuente Carmona & Sara Antomarioni, 2019. "A Process to Implement an Artificial Neural Network and Association Rules Techniques to Improve Asset Performance and Energy Efficiency," Energies, MDPI, vol. 12(18), pages 1-25, September.
    11. Asad, Mohammad Waqar Ali & Qureshi, Muhammad Asim & Jang, Hyongdoo, 2016. "A review of cut-off grade policy models for open pit mining operations," Resources Policy, Elsevier, vol. 49(C), pages 142-152.
    12. Shishvan, Masoud Soleymani & Sattarvand, Javad, 2015. "Long term production planning of open pit mines by ant colony optimization," European Journal of Operational Research, Elsevier, vol. 240(3), pages 825-836.
    13. Yasrebi, Amir Bijan & Hezarkhani, Ardeshir & Afzal, Peyman, 2017. "Application of Present Value-Volume (PV-V) and NPV-Cumulative Total Ore (NPV-CTO) fractal modelling for mining strategy selection," Resources Policy, Elsevier, vol. 53(C), pages 384-393.
    14. Zhang, Hong & Nguyen, Hoang & Bui, Xuan-Nam & Nguyen-Thoi, Trung & Bui, Thu-Thuy & Nguyen, Nga & Vu, Diep-Anh & Mahesh, Vinyas & Moayedi, Hossein, 2020. "Developing a novel artificial intelligence model to estimate the capital cost of mining projects using deep neural network-based ant colony optimization algorithm," Resources Policy, Elsevier, vol. 66(C).
    15. El-Fergany, Attia A., 2018. "Extracting optimal parameters of PEM fuel cells using Salp Swarm Optimizer," Renewable Energy, Elsevier, vol. 119(C), pages 641-648.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nguyen, Hoang & Bui, Xuan-Nam & Topal, Erkan, 2023. "Reliability and availability artificial intelligence models for predicting blast-induced ground vibration intensity in open-pit mines to ensure the safety of the surroundings," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    2. Li, Xiaobin & Sengupta, Tuhin & Si Mohammed, Kamel & Jamaani, Fouad, 2023. "Forecasting the lithium mineral resources prices in China: Evidence with Facebook Prophet (Fb-P) and Artificial Neural Networks (ANN) methods," Resources Policy, Elsevier, vol. 82(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noriega, Roberto & Pourrahimian, Yashar, 2022. "A systematic review of artificial intelligence and data-driven approaches in strategic open-pit mine planning," Resources Policy, Elsevier, vol. 77(C).
    2. Yasrebi, Amir Bijan & Hezarkhani, Ardeshir & Afzal, Peyman, 2017. "Application of Present Value-Volume (PV-V) and NPV-Cumulative Total Ore (NPV-CTO) fractal modelling for mining strategy selection," Resources Policy, Elsevier, vol. 53(C), pages 384-393.
    3. Biswas, Pritam & Sinha, Rabindra Kumar & Sen, Phalguni, 2023. "A review of state-of-the-art techniques for the determination of the optimum cut-off grade of a metalliferous deposit with a bibliometric mapping in a surface mine planning context," Resources Policy, Elsevier, vol. 83(C).
    4. Shi, Tao & Li, Chongyang & Zhang, Wei & Zhang, Yi, 2023. "Forecasting on metal resource spot settlement price: New evidence from the machine learning model," Resources Policy, Elsevier, vol. 81(C).
    5. Zheng, Shuxian & Tan, Zhanglu & Xing, Wanli & Zhou, Xuanru & Zhao, Pei & Yin, Xiuqi & Hu, Han, 2022. "A comparative exploration of the chaotic characteristics of Chinese and international copper futures prices," Resources Policy, Elsevier, vol. 78(C).
    6. Nabavi, Zohre & Mirzehi, Mohammad & Dehghani, Hesam, 2024. "Reliable novel hybrid extreme gradient boosting for forecasting copper prices using meta-heuristic algorithms: A thirty-year analysis," Resources Policy, Elsevier, vol. 90(C).
    7. Zeng, Lanyan & Liu, Shi Qiang & Kozan, Erhan & Corry, Paul & Masoud, Mahmoud, 2021. "A comprehensive interdisciplinary review of mine supply chain management," Resources Policy, Elsevier, vol. 74(C).
    8. Zhang, Hong & Nguyen, Hoang & Bui, Xuan-Nam & Nguyen-Thoi, Trung & Bui, Thu-Thuy & Nguyen, Nga & Vu, Diep-Anh & Mahesh, Vinyas & Moayedi, Hossein, 2020. "Developing a novel artificial intelligence model to estimate the capital cost of mining projects using deep neural network-based ant colony optimization algorithm," Resources Policy, Elsevier, vol. 66(C).
    9. Jiang Yao & Zhiqiang Wang & Hongbin Chen & Weigang Hou & Xiaomiao Zhang & Xu Li & Weixing Yuan, 2023. "Open-Pit Mine Truck Dispatching System Based on Dynamic Ore Blending Decisions," Sustainability, MDPI, vol. 15(4), pages 1-12, February.
    10. Paithankar, Amol & Chatterjee, Snehamoy & Goodfellow, Ryan & Asad, Mohammad Waqar Ali, 2020. "Simultaneous stochastic optimization of production sequence and dynamic cut-off grades in an open pit mining operation," Resources Policy, Elsevier, vol. 66(C).
    11. Paithankar, Amol & Chatterjee, Snehamoy & Goodfellow, Ryan, 2021. "Open-pit mining complex optimization under uncertainty with integrated cut-off grade based destination policies," Resources Policy, Elsevier, vol. 70(C).
    12. Luo, Hongyuan & Wang, Deyun & Cheng, Jinhua & Wu, Qiaosheng, 2022. "Multi-step-ahead copper price forecasting using a two-phase architecture based on an improved LSTM with novel input strategy and error correction," Resources Policy, Elsevier, vol. 79(C).
    13. Henriques, Irene & Sadorsky, Perry, 2023. "Forecasting rare earth stock prices with machine learning," Resources Policy, Elsevier, vol. 86(PA).
    14. Chunyan, Ling & Jingzhe, Lei & Way, Kuo, 2022. "Bayesian support vector machine for optimal reliability design of modular systems," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    15. Franco-Sepúlveda, Giovanni & Del Rio-Cuervo, Juan Camilo & Pachón-Hernández, María Angélica, 2019. "State of the art about metaheuristics and artificial neural networks applied to open pit mining," Resources Policy, Elsevier, vol. 60(C), pages 125-133.
    16. Li, Ning & Li, Jiaojiao & Wang, Qizhou & Yan, Dairong & Wang, Liguan & Jia, Mingtao, 2024. "A novel copper price forecasting ensemble method using adversarial interpretive structural model and sparrow search algorithm," Resources Policy, Elsevier, vol. 91(C).
    17. Zhang, Hong & Nguyen, Hoang & Bui, Xuan-Nam & Pradhan, Biswajeet & Mai, Ngoc-Luan & Vu, Diep-Anh, 2021. "Proposing two novel hybrid intelligence models for forecasting copper price based on extreme learning machine and meta-heuristic algorithms," Resources Policy, Elsevier, vol. 73(C).
    18. Ren, Siyu & Hao, Yu & Wu, Haitao, 2022. "The role of outward foreign direct investment (OFDI) on green total factor energy efficiency: Does institutional quality matters? Evidence from China," Resources Policy, Elsevier, vol. 76(C).
    19. Chatterjee, Snehamoy & Sethi, Manas Ranjan & Asad, Mohammad Waqar Ali, 2016. "Production phase and ultimate pit limit design under commodity price uncertainty," European Journal of Operational Research, Elsevier, vol. 248(2), pages 658-667.
    20. Wu, Jiawei & Wan, Liangqi, 2024. "Reliability sensitivity analysis for RBSMC: A high-efficiency multiple response Gaussian process model," Reliability Engineering and System Safety, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:74:y:2021:i:c:s030142072100310x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.