IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v82y2020ics0966692319301103.html
   My bibliography  Save this article

Analysis on spatiotemporal urban mobility based on online car-hailing data

Author

Listed:
  • Zhang, Bin
  • Chen, Shuyan
  • Ma, Yongfeng
  • Li, Tiezhu
  • Tang, Kun

Abstract

As an emerging travel mode, online car-hailing plays an increasingly important role in people's daily travel. Car-hailing data provide a new source to study human mobility in urban areas. This study focuses on identifying the distribution of regions with high travel intensity and the correlation between travel intensity and points of interest (POIs), based on the online car-hailing data collected in Chengdu, China. Firstly, the whole city area was divided into 16,100 uniform blocks and the number of pick-up and drop-off activities in each block was counted. Then, all POIs were categorized into 13 types and the number of different types of POIs in each block was counted. On this basis, the grade of travel intensity and POIs density in each block was identified according to the number of travel activities and POIs respectively. Finally, the correlation between the travel intensity and the POIs density was explored with ordered logistic regression. Experiment results showed that regions with high travel intensity are mainly distributed within the Second Ring Road, while those in the suburbs of city are usually the large transportation hubs, such as airports and train stations. Different types of POIs have different impacts on the online car-hailing travel intensity, and the density of traffic facilities has the greatest impact, including pick-up and drop-off, followed by density of scenic spot. The densities of service facilities and sports facility have an impact on the intensity of pick-up, while the impact on the intensity of drop-off is not significant. The density of company has no significant impact on the intensity of neither pick-up nor drop-off. These findings can contribute to a better understanding of online car-hailing travel activities and their relation with the urban space, and can provide useful information for urban planning and location-based services.

Suggested Citation

  • Zhang, Bin & Chen, Shuyan & Ma, Yongfeng & Li, Tiezhu & Tang, Kun, 2020. "Analysis on spatiotemporal urban mobility based on online car-hailing data," Journal of Transport Geography, Elsevier, vol. 82(C).
  • Handle: RePEc:eee:jotrge:v:82:y:2020:i:c:s0966692319301103
    DOI: 10.1016/j.jtrangeo.2019.102568
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692319301103
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2019.102568?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Camille Roth & Soong Moon Kang & Michael Batty & Marc Barthélemy, 2011. "Structure of Urban Movements: Polycentric Activity and Entangled Hierarchical Flows," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-8, January.
    2. Zhao, Pengjun & Li, Peilin, 2019. "Travel satisfaction inequality and the role of the urban metro system," Transport Policy, Elsevier, vol. 79(C), pages 66-81.
    3. Hahn, Jin-Seok & Kim, Hyoung-Chul & Kim, Joon-Ki & Ulfarsson, Gudmundur F., 2016. "Trip making of older adults in Seoul: Differences in effects of personal and household characteristics by age group and trip purpose," Journal of Transport Geography, Elsevier, vol. 57(C), pages 55-62.
    4. Yang, Zhisen & Yang, Zaili & Yin, Jingbo, 2018. "Realising advanced risk-based port state control inspection using data-driven Bayesian networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 38-56.
    5. Zhang, Xiaohu & Xu, Yang & Tu, Wei & Ratti, Carlo, 2018. "Do different datasets tell the same story about urban mobility — A comparative study of public transit and taxi usage," Journal of Transport Geography, Elsevier, vol. 70(C), pages 78-90.
    6. Liu, Xi & Gong, Li & Gong, Yongxi & Liu, Yu, 2015. "Revealing travel patterns and city structure with taxi trip data," Journal of Transport Geography, Elsevier, vol. 43(C), pages 78-90.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Zhiyuan & Yao, Wei & Wu, Sheng & Yang, Xiping & Wu, Qunyong & Fang, Zhixiang, 2023. "Identifying the collaborative scheduling areas between ride-hailing and traditional taxi services based on vehicle trajectory data," Journal of Transport Geography, Elsevier, vol. 107(C).
    2. Zhenbao Wang & Xin Gong & Yuchen Zhang & Shuyue Liu & Ning Chen, 2023. "Multi-Scale Geographically Weighted Elasticity Regression Model to Explore the Elastic Effects of the Built Environment on Ride-Hailing Ridership," Sustainability, MDPI, vol. 15(6), pages 1-22, March.
    3. He, Mingwei & He, Chengfeng & Shi, Zhuangbin & He, Min, 2022. "Spatiotemporal heterogeneous effects of socio-demographic and built environment on private car usage: An empirical study of Kunming, China," Journal of Transport Geography, Elsevier, vol. 101(C).
    4. Jincheng Wang & Qunqi Wu & Feng Mao & Yilong Ren & Zilin Chen & Yaqun Gao, 2021. "Influencing Factor Analysis and Demand Forecasting of Intercity Online Car-Hailing Travel," Sustainability, MDPI, vol. 13(13), pages 1-19, July.
    5. Ma, Yongfeng & Zhang, Ziyu & Chen, Shuyan & Pan, Yingjiu & Hu, Shuqin & Li, Zeyang, 2021. "Investigating the impact of spatial-temporal grid size on the microscopic forecasting of the inflow and outflow gap in a free-floating bike-sharing system," Journal of Transport Geography, Elsevier, vol. 96(C).
    6. Chen, Chao & Feng, Tao & Ding, Chuan & Yu, Bin & Yao, Baozhen, 2021. "Examining the spatial-temporal relationship between urban built environment and taxi ridership: Results of a semi-parametric GWPR model," Journal of Transport Geography, Elsevier, vol. 96(C).
    7. Xueyu Mi & Chunjiao Dong & Ning Li & Yi Lin & Chunfu Shao & Bosong Fan, 2021. "Operating Safety Evaluation of Battery-Electric Taxi Based on Spatio-Temporal Speed Parameters," Sustainability, MDPI, vol. 13(23), pages 1-10, December.
    8. He, Zhengbing, 2021. "Portraying ride-hailing mobility using multi-day trip order data: A case study of Beijing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 146(C), pages 152-169.
    9. Chen, Qingqing & Chuang, I-Ting & Poorthuis, Ate, 2021. "Entangled footprints: Understanding urban neighbourhoods by measuring distance, diversity, and direction of flows in Singapore," SocArXiv b2y75, Center for Open Science.
    10. Xinyi Xie & Mingyang Du & Xuefeng Li & Yunjian Jiang, 2023. "Exploring Influential Factors of Free-Floating Bike-Sharing Usage Frequency before and after COVID-19," Sustainability, MDPI, vol. 15(11), pages 1-17, May.
    11. Du, Mingyang & Cheng, Lin & Li, Xuefeng & Liu, Qiyang & Yang, Jingzong, 2022. "Spatial variation of ridesplitting adoption rate in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 13-37.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Shanqi & Yang, Yu & Zhen, Feng & Lobsang, Tashi & Li, Zhixuan, 2021. "Understanding the travel behaviors and activity patterns of the vulnerable population using smart card data: An activity space-based approach," Journal of Transport Geography, Elsevier, vol. 90(C).
    2. Kirtonia, Sajeeb & Sun, Yanshuo, 2022. "Evaluating rail transit's comparative advantages in travel cost and time over taxi with open data in two U.S. cities," Transport Policy, Elsevier, vol. 115(C), pages 75-87.
    3. Cai, Hua & Zhan, Xiaowei & Zhu, Ji & Jia, Xiaoping & Chiu, Anthony S.F. & Xu, Ming, 2016. "Understanding taxi travel patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 590-597.
    4. Zhang, Shen & Liu, Xin & Tang, Jinjun & Cheng, Shaowu & Qi, Yong & Wang, Yinhai, 2018. "Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 537-551.
    5. Zhang, Yuerong & Marshall, Stephen & Manley, Ed, 2021. "Understanding the roles of rail stations: Insights from network approaches in the London metropolitan area," Journal of Transport Geography, Elsevier, vol. 94(C).
    6. Cats, Oded & Wang, Qian & Zhao, Yu, 2015. "Identification and classification of public transport activity centres in Stockholm using passenger flows data," Journal of Transport Geography, Elsevier, vol. 48(C), pages 10-22.
    7. Chen, Wendong & Chen, Xuewu & Cheng, Long & Liu, Xize & Chen, Jingxu, 2022. "Delineating borders of urban activity zones with free-floating bike sharing spatial interaction network," Journal of Transport Geography, Elsevier, vol. 104(C).
    8. Chen, Qingqing & Chuang, I-Ting & Poorthuis, Ate, 2021. "Entangled footprints: Understanding urban neighbourhoods by measuring distance, diversity, and direction of flows in Singapore," SocArXiv b2y75, Center for Open Science.
    9. Fangye Du & Jiaoe Wang & Yu Liu & Zihao Zhou & Haitao Jin, 2022. "Equity in Health-Seeking Behavior of Groups Using Different Transportations," IJERPH, MDPI, vol. 19(5), pages 1-16, February.
    10. Liao, Yuan, 2021. "Ride-sourcing compared to its public-transit alternative using big trip data," Journal of Transport Geography, Elsevier, vol. 95(C).
    11. Tian, Xuecheng & Yan, Ran & Liu, Yannick & Wang, Shuaian, 2023. "A smart predict-then-optimize method for targeted and cost-effective maritime transportation," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 32-52.
    12. Benjamin Davies & David C. Maré, 2020. "Delineating functional labour market areas with estimable classification stabilities," Working Papers 20_08, Motu Economic and Public Policy Research.
    13. He, Yifan & Zhao, Chen & Zeng, An, 2022. "Ranking locations in a city via the collective home-work relations in human mobility data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    14. Paul Drummond, 2021. "Assessing City Governance for Low-Carbon Mobility in London," Sustainability, MDPI, vol. 13(5), pages 1-24, February.
    15. Junjie Fu & Xinqiang Chen & Shubo Wu & Chaojian Shi & Huafeng Wu & Jiansen Zhao & Pengwen Xiong, 2020. "Mining ship deficiency correlations from historical port state control (PSC) inspection data," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-19, February.
    16. Huang, Feihu & Qiao, Shaojie & Peng, Jian & Guo, Bing & Xiong, Xi & Han, Nan, 2019. "A movement model for air passengers based on trip purpose," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 798-808.
    17. Antão, P. & Sun, S. & Teixeira, A.P. & Guedes Soares, C., 2023. "Quantitative assessment of ship collision risk influencing factors from worldwide accident and fleet data," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    18. Zhou, Xiaolu & Wang, Mingshu & Li, Dongying, 2019. "Bike-sharing or taxi? Modeling the choices of travel mode in Chicago using machine learning," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    19. Nwokedi Theophilus C. & Eko-Rapheals Melvin Urhoromu & Obasi Catherine & Okechkwu Anyanwu Julius, 2022. "Performance of Abuja MOU on Port State Control in Enforcement of IMO Regulations on Maritime Safety," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 13(1), pages 233-244, January.
    20. Yang, Yongjiang & Sasaki, Kuniaki & Cheng, Long & Tao, Sui, 2022. "Does the built environment matter for active travel among older adults: Insights from Chiba City, Japan," Journal of Transport Geography, Elsevier, vol. 101(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:82:y:2020:i:c:s0966692319301103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.