IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v71y2018icp235-252.html
   My bibliography  Save this article

Analysis of the impacts of different modes of governance on inland waterway transport development on the Pearl River: The Yangtze River Mode vs. the Pearl River Mode

Author

Listed:
  • Jiang, Yonglei
  • Lu, Jing
  • Cai, Yutong
  • Zeng, Qingcheng

Abstract

Different modes of governance will certainly have different impacts on the development of the inland waterway network and inland shipping economy on the Yangtze River and Pearl River in China. The inland waterway transport (IWT) economy on both rivers has recently been considered part of the national economic strategy, and it is necessary to analyze the differences between the two modes of governance applied on the arteries of the Yangtze River and the Pearl River and to explore their different impacts on the development of waterway systems. First, this paper considers the Pearl River Economic Belt as an example for comparing the effects of different modes of governance on the development of IWT systems. Second, from the perspective of systems theory, the economic structures of IWT systems under different modes of governance are described. Third, data are collected from inland shipping industries in the Pearl River system, and system dynamic (SD) models of the IWT system are constructed using the Vensim PLE software suite. Finally, the SD models are employed to compare the differences in the development of spatial patterns of waterway systems under two modes of governance and different investment structures.

Suggested Citation

  • Jiang, Yonglei & Lu, Jing & Cai, Yutong & Zeng, Qingcheng, 2018. "Analysis of the impacts of different modes of governance on inland waterway transport development on the Pearl River: The Yangtze River Mode vs. the Pearl River Mode," Journal of Transport Geography, Elsevier, vol. 71(C), pages 235-252.
  • Handle: RePEc:eee:jotrge:v:71:y:2018:i:c:p:235-252
    DOI: 10.1016/j.jtrangeo.2017.09.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692316305865
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2017.09.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Di Zhang & Xinping Yan & Zaili Yang & Jin Wang, 2014. "An accident data–based approach for congestion risk assessment of inland waterways: A Yangtze River case," Journal of Risk and Reliability, , vol. 228(2), pages 176-188, April.
    2. Comtois, Claude & Slack, Brian & Sletmo, Gunnar K., 1997. "Political issues in inland waterways port development: prospects for regionalization," Transport Policy, Elsevier, vol. 4(4), pages 257-265, October.
    3. Witte, Patrick & Wiegmans, Bart & van Oort, Frank & Spit, Tejo, 2014. "Governing inland ports: a multi-dimensional approach to addressing inland port–city challenges in European transport corridors," Journal of Transport Geography, Elsevier, vol. 36(C), pages 42-52.
    4. Li, J.Y. & Notteboom, T.E. & Jacobs, W., 2014. "China in transition: institutional change at work in inland waterway transport on the Yangtze River," Journal of Transport Geography, Elsevier, vol. 40(C), pages 17-28.
    5. Zhongzhen Yang & Haiping Shi & Kang Chen & Hongli Bao, 2014. "Optimization of container liner network on the Yangtze River," Maritime Policy & Management, Taylor & Francis Journals, vol. 41(1), pages 79-96, January.
    6. Mihic, Svetlana & Golusin, Mirjana & Mihajlovic, Milan, 2011. "Policy and promotion of sustainable inland waterway transport in Europe - Danube River," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1801-1809, May.
    7. Zhang, D. & Yan, X.P. & Yang, Z.L. & Wall, A. & Wang, J., 2013. "Incorporation of formal safety assessment and Bayesian network in navigational risk estimation of the Yangtze River," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 93-105.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Ran & Wang, Shuaian & Zhen, Lu, 2023. "An extended smart “predict, and optimize” (SPO) framework based on similar sets for ship inspection planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    2. Feng, Xuehao & Song, Rui & Yin, Wenwei & Yin, Xiaowei & Zhang, Ruiyou, 2023. "Multimodal transportation network with cargo containerization technology: Advantages and challenges," Transport Policy, Elsevier, vol. 132(C), pages 128-143.
    3. Lu, Cheng & Aritua, Bernard & de Leijer, Harrie & van Liere, Richard & Lee, Paul Tae-Woo, 2023. "Exploring causes of growth in China's inland waterway transport, 1978–2018: Documentary analysis approach," Transport Policy, Elsevier, vol. 136(C), pages 47-58.
    4. Li, Zhi-Chun & Wang, Mei-Ru & Fu, Xiaowen, 2021. "Strategic planning of inland river ports under different market structures: Coordinated vs. independent operating regime," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    5. N. Calderón-Rivera & I. Bartusevičienė & F. Ballini, 2024. "Sustainable development of inland waterways transport: a review," Journal of Shipping and Trade, Springer, vol. 9(1), pages 1-22, December.
    6. Elżbieta Szaruga & Elżbieta Załoga, 2022. "Qualitative–Quantitative Warning Modeling of Energy Consumption Processes in Inland Waterway Freight Transport on River Sections for Environmental Management," Energies, MDPI, vol. 15(13), pages 1-21, June.
    7. Jiang, Ziran & Lei, Liping & Zhang, Jianzhen & Wang, Chengjin & Ye, Shilin, 2023. "Spatio-temporal evolution and location factors of port and shipping service enterprises: A case study of the Yangtze River Delta," Journal of Transport Geography, Elsevier, vol. 106(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dadashpoor, Hashem & Arasteh, Mojtaba, 2020. "Core-port connectivity: Towards shaping a national hinterland in a West Asia country," Transport Policy, Elsevier, vol. 88(C), pages 57-68.
    2. Wang, Likun & Yang, Zaili, 2018. "Bayesian network modelling and analysis of accident severity in waterborne transportation: A case study in China," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 277-289.
    3. Zhang, Qiang & Yang, Dong & Chen, Yang, 2021. "Port integration on the Yangtze River: Does it follow an "interest balance" pattern?," Transport Policy, Elsevier, vol. 108(C), pages 83-94.
    4. Zhang, Ruiyou & Huang, Chao & Feng, Xuehao, 2020. "Empty container repositioning with foldable containers in a river transport network considering the limitations of bridge heights," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 197-213.
    5. Liu, Weichen & Cao, Youhui & Chen, Jianglong & Guo, Jiaying & Liang, Shuangbo, 2023. "Organization of river-sea container transportation in the Yangtze River: Processes and mechanisms," Journal of Transport Geography, Elsevier, vol. 108(C).
    6. Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    7. Yang, Zhisen & Yang, Zaili & Yin, Jingbo, 2018. "Realising advanced risk-based port state control inspection using data-driven Bayesian networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 38-56.
    8. Di Zhang & Xinping Yan & Zaili Yang & Jin Wang, 2014. "An accident data–based approach for congestion risk assessment of inland waterways: A Yangtze River case," Journal of Risk and Reliability, , vol. 228(2), pages 176-188, April.
    9. de Almeida Rodrigues, Thiago & Maria de Miranda Mota, Caroline & Manuele dos Santos, Inez, 2021. "Determining dry port criteria that support decision making," Research in Transportation Economics, Elsevier, vol. 88(C).
    10. Zheng, Jianfeng & Yang, Dong, 2016. "Hub-and-spoke network design for container shipping along the Yangtze River," Journal of Transport Geography, Elsevier, vol. 55(C), pages 51-57.
    11. Zhao, Yiran & Yang, Zhongzhen & Haralambides, Hercules, 2019. "Optimizing the transport of export containers along China's coronary artery: The Yangtze River," Journal of Transport Geography, Elsevier, vol. 77(C), pages 11-25.
    12. Wang, Shuaian & Yan, Ran & Qu, Xiaobo, 2019. "Development of a non-parametric classifier: Effective identification, algorithm, and applications in port state control for maritime transportation," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 129-157.
    13. Guizhen Zhang & Vinh V. Thai & Adrian Wing‐Keung Law & Kum Fai Yuen & Hui Shan Loh & Qingji Zhou, 2020. "Quantitative Risk Assessment of Seafarers’ Nonfatal Injuries Due to Occupational Accidents Based on Bayesian Network Modeling," Risk Analysis, John Wiley & Sons, vol. 40(1), pages 8-23, January.
    14. Cai, Mingyou & Zhang, Jinfen & Zhang, Di & Yuan, Xiaoli & Soares, C. Guedes, 2021. "Collision risk analysis on ferry ships in Jiangsu Section of the Yangtze River based on AIS data," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    15. Li, Huanhuan & Ren, Xujie & Yang, Zaili, 2023. "Data-driven Bayesian network for risk analysis of global maritime accidents," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    16. Gujar, Girish C. & Ng, Adolf K.Y. & Notteboom, Theo, 2019. "The impacts of major government initiatives on the development of dry ports: A case study of the direct port delivery scheme in India," Journal of Transport Geography, Elsevier, vol. 80(C).
    17. Danièle Patier, 2000. "L'intégration des marchandises dans le système de déplacements urbains : actes des treizièmes entretiens Jacques Cartier, 1er - 6 octobre 2000, Montréal (Québec)," Post-Print halshs-00196199, HAL.
    18. Fan, Shiqi & Blanco-Davis, Eduardo & Yang, Zaili & Zhang, Jinfen & Yan, Xinping, 2020. "Incorporation of human factors into maritime accident analysis using a data-driven Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    19. Molin Sun & Zhongyi Zheng & Longhui Gang, 2018. "Uncertainty Analysis of the Estimated Risk in Formal Safety Assessment," Sustainability, MDPI, vol. 10(2), pages 1-16, January.
    20. Caldeira dos Santos, Murillo & Pereira, Fábio Henrique, 2021. "Development and application of a dynamic model for road port access and its impacts on port-city relationship indicators," Journal of Transport Geography, Elsevier, vol. 96(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:71:y:2018:i:c:p:235-252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.