IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v33y2013icp42-53.html
   My bibliography  Save this article

The severity of pedestrian crashes: an analysis using Google Street View imagery

Author

Listed:
  • Hanson, Christopher S.
  • Noland, Robert B.
  • Brown, Charles

Abstract

Data derived from visual inspection of Google Street View imagery associated with a variety of pedestrian and road infrastructure features are analyzed with a database of pedestrian casualties. These features include the presence of sidewalks, buffers between the road and the sidewalk, street lighting, number of travel lanes and the presence of medians, traffic controls at intersections, and posted speed limits. The analysis focuses on how these features affect the severity of a pedestrian casualty once it has occurred. Other controls used in the analysis include the age of the victim, ambient lighting conditions, and whether the vehicle driver was intoxicated. Results suggest that severity of pedestrian casualties is associated with the lack of sidewalks and buffers, high-speed roads, roads with six or more lanes and a median, and lack of traffic lighting when it is dark. Speed is a critical factor in determining the severity of crash outcomes, and most road characteristics affect crash outcomes to the extent that they moderate or facilitate high speeds. Casualties are more severe when it is dark than when it is daylight. Older pedestrians tend to have more severe casualties. A key contribution of this work is the use of Google Street View imagery; however, a limitation is that the analysis cannot examine the probability of a pedestrian casualty. Implications for road safety are consistent with national efforts to make streets safer via Complete Streets policies.

Suggested Citation

  • Hanson, Christopher S. & Noland, Robert B. & Brown, Charles, 2013. "The severity of pedestrian crashes: an analysis using Google Street View imagery," Journal of Transport Geography, Elsevier, vol. 33(C), pages 42-53.
  • Handle: RePEc:eee:jotrge:v:33:y:2013:i:c:p:42-53
    DOI: 10.1016/j.jtrangeo.2013.09.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692313001713
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2013.09.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    2. Daniel J. Graham & Stephen Glaister, 2003. "Spatial Variation in Road Pedestrian Casualties: The Role of Urban Scale, Density and Land-use Mix," Urban Studies, Urban Studies Journal Limited, vol. 40(8), pages 1591-1607, July.
    3. Noland, Robert B. & Quddus, Mohammed A., 2005. "Congestion and safety: A spatial analysis of London," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(7-9), pages 737-754.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seung-Hoon Park & Min-Kyung Bae, 2020. "Exploring the Determinants of the Severity of Pedestrian Injuries by Pedestrian Age: A Case Study of Daegu Metropolitan City, South Korea," IJERPH, MDPI, vol. 17(7), pages 1-16, March.
    2. Aghaabbasi, Mahdi & Moeinaddini, Mehdi & Shah, Muahammad Zaly & Asadi-Shekari, Zohreh, 2018. "Addressing issues in the use of Google tools for assessing pedestrian built environments," Journal of Transport Geography, Elsevier, vol. 73(C), pages 185-198.
    3. Prato, Carlo G. & Kaplan, Sigal & Patrier, Alexandre & Rasmussen, Thomas K., 2019. "Integrating police reports with geographic information system resources for uncovering patterns of pedestrian crashes in Denmark," Journal of Transport Geography, Elsevier, vol. 74(C), pages 10-23.
    4. Jonathan Stiles & Yuchen Li & Harvey J Miller, 2022. "How does street space influence crash frequency? An analysis using segmented street view imagery," Environment and Planning B, , vol. 49(9), pages 2467-2483, November.
    5. Arsalan Esmaili & Kayvan Aghabayk & Nirajan Shiwakoti, 2022. "Latent Class Cluster Analysis and Mixed Logit Model to Investigate Pedestrian Crash Injury Severity," Sustainability, MDPI, vol. 15(1), pages 1-29, December.
    6. Dongkwan Lee & Jean-Michel Guldmann & Burkhard von Rabenau, 2023. "Impact of Driver’s Age and Gender, Built Environment, and Road Conditions on Crash Severity: A Logit Modeling Approach," IJERPH, MDPI, vol. 20(3), pages 1-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahlfeldt, Gabriel M. & Pietrostefani, Elisabetta, 2019. "The economic effects of density: A synthesis," Journal of Urban Economics, Elsevier, vol. 111(C), pages 93-107.
    2. Albalate, Daniel & Fageda, Xavier, 2021. "On the relationship between congestion and road safety in cities," Transport Policy, Elsevier, vol. 105(C), pages 145-152.
    3. Mehzabin Tuli, Farzana & Mitra, Suman & Crews, Mariah B., 2021. "Factors influencing the usage of shared E-scooters in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 164-185.
    4. John Stanley & Janet Stanley, 2023. "Improving Appraisal Methodology for Land Use Transport Measures to Reduce Risk of Social Exclusion," Sustainability, MDPI, vol. 15(15), pages 1-18, August.
    5. Marie Geraldine Herrmann-Lunecke & Cristhian Figueroa-Martínez & Francisca Parra Huerta & Rodrigo Mora, 2022. "The Disabling City: Older Persons Walking in Central Neighbourhoods of Santiago de Chile," Sustainability, MDPI, vol. 14(17), pages 1-19, September.
    6. Li, Jingjing & Kim, Changjoo & Sang, Sunhee, 2018. "Exploring impacts of land use characteristics in residential neighborhood and activity space on non-work travel behaviors," Journal of Transport Geography, Elsevier, vol. 70(C), pages 141-147.
    7. Ding, Chuan & Wang, Donggen & Liu, Chao & Zhang, Yi & Yang, Jiawen, 2017. "Exploring the influence of built environment on travel mode choice considering the mediating effects of car ownership and travel distance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 65-80.
    8. Van Acker, Veronique & Ho, Loan & Stevens, Larissa & Mulley, Corinne, 2020. "Quantifying the effects of childhood and previous residential experiences on the use of public transport," Journal of Transport Geography, Elsevier, vol. 86(C).
    9. Ding, Yu & Lu, Huapu, 2016. "Activity participation as a mediating variable to analyze the effect of land use on travel behavior: A structural equation modeling approach," Journal of Transport Geography, Elsevier, vol. 52(C), pages 23-28.
    10. Singleton, Patrick A. & Park, Keunhyun & Lee, Doo Hong, 2021. "Varying influences of the built environment on daily and hourly pedestrian crossing volumes at signalized intersections estimated from traffic signal controller event data," Journal of Transport Geography, Elsevier, vol. 93(C).
    11. Toşa, Cristian & Sato, Hitomi & Morikawa, Takayuki & Miwa, Tomio, 2018. "Commuting behavior in emerging urban areas: Findings of a revealed-preferences and stated-intentions survey in Cluj-Napoca, Romania," Journal of Transport Geography, Elsevier, vol. 68(C), pages 78-93.
    12. Liu, Yan & Wang, Siqin & Xie, Bin, 2019. "Evaluating the effects of public transport fare policy change together with built and non-built environment features on ridership: The case in South East Queensland, Australia," Transport Policy, Elsevier, vol. 76(C), pages 78-89.
    13. Regine Gerike & Caroline Koszowski & Bettina Schröter & Ralph Buehler & Paul Schepers & Johannes Weber & Rico Wittwer & Peter Jones, 2021. "Built Environment Determinants of Pedestrian Activities and Their Consideration in Urban Street Design," Sustainability, MDPI, vol. 13(16), pages 1-21, August.
    14. Chetan Doddamani & M. Manoj, 2023. "Analysis of the influences of built environment measures on household car and motorcycle ownership decisions in Hubli-Dharwad cities," Transportation, Springer, vol. 50(1), pages 205-243, February.
    15. Jie Gao & Dick Ettema & Marco Helbich & Carlijn B. M. Kamphuis, 2019. "Travel mode attitudes, urban context, and demographics: do they interact differently for bicycle commuting and cycling for other purposes?," Transportation, Springer, vol. 46(6), pages 2441-2463, December.
    16. He, Mingwei & He, Chengfeng & Shi, Zhuangbin & He, Min, 2022. "Spatiotemporal heterogeneous effects of socio-demographic and built environment on private car usage: An empirical study of Kunming, China," Journal of Transport Geography, Elsevier, vol. 101(C).
    17. Boukarta Soufiane & Berezowska-Azzag Ewa, 2020. "Exploring the Role of Socio-Economic and Built Environment Driving Factors in Shaping the Commuting Modal Share: A Path-Analysis-Based Approach," Quaestiones Geographicae, Sciendo, vol. 39(4), pages 87-107, December.
    18. Mouratidis, Kostas & Ettema, Dick & Næss, Petter, 2019. "Urban form, travel behavior, and travel satisfaction," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 306-320.
    19. Su, Rongxiang & Xiao, Jingyi & McBride, Elizabeth C. & Goulias, Konstadinos G., 2021. "Understanding senior's daily mobility patterns in California using human mobility motifs," Journal of Transport Geography, Elsevier, vol. 94(C).
    20. Hamdi Lemamsha & Chris Papadopoulos & Gurch Randhawa, 2018. "Perceived Environmental Factors Associated with Obesity in Libyan Men and Women," IJERPH, MDPI, vol. 15(2), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:33:y:2013:i:c:p:42-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.