IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v123y2025ics0966692325000031.html
   My bibliography  Save this article

Revealing the relationship between 2D/3D built environment and jobs-housing separation coupling nonlinearity and spatial nonstationarity

Author

Listed:
  • An, Rui
  • Tong, Zhaomin
  • Tan, Bo
  • Xiong, Qiangqiang
  • Luo, Yuanyuan
  • Liu, Yaolin
  • Yang, Linchuan
  • Yang, Xiping

Abstract

Transit-oriented development encourages metropolises to alleviate jobs-housing separation (JHS) by optimizing the built environment (BE). Researchers have found that BE exerts different effects on home- and work-oriented JHS, but their statistical models ignored the nonlinear and spatially nonstationary features of the relationship. In this study, we collected location-based service data to identify commuters and aggregated them to 188 metro station areas from a home or work orientation. We then defined a parameter β to measure JHS following the distance decay law, added three-dimensional (3D) indicators to the “Node-Place-Function” system to describe the BE, and applied the LightGBM-SHAP after multi-model comparison to learn and visualize their complex relationships. We identified three types of BE variables: 1) exhibiting important effects only on one orientation, 2) exhibiting similar effects on two orientations, and 3) exhibiting opposite effects on two orientations. Particularly, we designed a new visualization framework for SHAP that synergizes nonlinear dependency with the spatial distribution, which can provide threshold targets and spatial ranges for policy regulation simultaneously. For example, Hanyang should increase its shared bicycle density to 900 vehicles/km2 to meet the travel needs of residents, while Jianghan should provide affordable housing (<180,00 yuan/m2) to meet the housing needs of workers. Our findings aim to encourage planners to consider nonlinear determined thresholds in regulating actual spaces, which can directly support the refined urban management under limited resource condition.

Suggested Citation

  • An, Rui & Tong, Zhaomin & Tan, Bo & Xiong, Qiangqiang & Luo, Yuanyuan & Liu, Yaolin & Yang, Linchuan & Yang, Xiping, 2025. "Revealing the relationship between 2D/3D built environment and jobs-housing separation coupling nonlinearity and spatial nonstationarity," Journal of Transport Geography, Elsevier, vol. 123(C).
  • Handle: RePEc:eee:jotrge:v:123:y:2025:i:c:s0966692325000031
    DOI: 10.1016/j.jtrangeo.2025.104112
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692325000031
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2025.104112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Jiangping & Wang, Yin & Schweitzer, Lisa, 2012. "Jobs/housing balance and employer-based travel demand management program returns to scale: Evidence from Los Angeles," Transport Policy, Elsevier, vol. 20(C), pages 22-35.
    2. Miguel Padeiro & Ana Louro & Nuno Marques da Costa, 2019. "Transit-oriented development and gentrification: a systematic review," Transport Reviews, Taylor & Francis Journals, vol. 39(6), pages 733-754, November.
    3. Knowles, Richard D., 2012. "Transit Oriented Development in Copenhagen, Denmark: from the Finger Plan to Ørestad," Journal of Transport Geography, Elsevier, vol. 22(C), pages 251-261.
    4. Ibraeva, Anna & Correia, Gonçalo Homem de Almeida & Silva, Cecília & Antunes, António Pais, 2020. "Transit-oriented development: A review of research achievements and challenges," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 110-130.
    5. Yu, Zidong & Zhu, Xiaolin & Liu, Xintao, 2022. "Characterizing metro stations via urban function: Thematic evidence from transit-oriented development (TOD) in Hong Kong," Journal of Transport Geography, Elsevier, vol. 99(C).
    6. Zhong Zheng & Suhong Zhou & Xingdong Deng, 2022. "The spatially heterogeneous and double-edged effect of the built environment on commuting distance: Home-based and work-based perspectives," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-24, March.
    7. Pezeshknejad, Parsa & Monajem, Saeed & Mozafari, Hamid, 2020. "Evaluating sustainability and land use integration of BRT stations via extended node place model, an application on BRT stations of Tehran," Journal of Transport Geography, Elsevier, vol. 82(C).
    8. Liao, Cong & Scheuer, Bronte, 2022. "Evaluating the performance of transit-oriented development in Beijing metro station areas: Integrating morphology and demand into the node-place model," Journal of Transport Geography, Elsevier, vol. 100(C).
    9. Zhang, Yuerong & Marshall, Stephen & Manley, Ed, 2019. "Network criticality and the node-place-design model: Classifying metro station areas in Greater London," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    10. Tong, Zhaomin & An, Rui & Zhang, Ziyi & Liu, Yaolin & Luo, Minghai, 2022. "Exploring non-linear and spatially non-stationary relationships between commuting burden and built environment correlates," Journal of Transport Geography, Elsevier, vol. 104(C).
    11. Zhao, Pengjun & Cao, Yushu, 2020. "Commuting inequity and its determinants in Shanghai: New findings from big-data analytics," Transport Policy, Elsevier, vol. 92(C), pages 20-37.
    12. Tao, Tao & Wang, Jueyu & Cao, Xinyu, 2020. "Exploring the non-linear associations between spatial attributes and walking distance to transit," Journal of Transport Geography, Elsevier, vol. 82(C).
    13. Zhao, Pengjun & Lü, Bin & Roo, Gert de, 2011. "Impact of the jobs-housing balance on urban commuting in Beijing in the transformation era," Journal of Transport Geography, Elsevier, vol. 19(1), pages 59-69.
    14. Su, Shiliang & Zhang, Hui & Wang, Miao & Weng, Min & Kang, Mengjun, 2021. "Transit-oriented development (TOD) typologies around metro station areas in urban China: A comparative analysis of five typical megacities for planning implications," Journal of Transport Geography, Elsevier, vol. 90(C).
    15. Zheng, Zhong & Zhou, Suhong & Deng, Xingdong, 2021. "Exploring both home-based and work-based jobs-housing balance by distance decay effect," Journal of Transport Geography, Elsevier, vol. 93(C).
    16. A. Stewart Fotheringham & Wenbai Yang & Wei Kang, 2017. "Multiscale Geographically Weighted Regression (MGWR)," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 107(6), pages 1247-1265, November.
    17. Cui, Xuezhu & Zhuang, Caigang & Jiao, Zhenzhi & Tan, Zhangzhi & Li, Shaoying, 2023. "How can urban built environment (BE) influence on-road (OR) carbon emissions? A road segment scale quantification based on massive vehicle trajectory big data," Journal of Transport Geography, Elsevier, vol. 111(C).
    18. Qianqian Yang & Yishao Shi & Liangliang Zhou, 2022. "Did Industrial Centralization Strategy in Shanghai’s Suburbs Lead to Economic Growth?," Sustainability, MDPI, vol. 14(2), pages 1-22, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Yingrui & Hu, Songhua & Zhang, Ming, 2024. "Evaluating equitable Transit-Oriented development (TOD) via the Node-Place-People model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 185(C).
    2. Pan, Huijun & Huang, Yu, 2024. "TOD typology and station area vibrancy: An interpretable machine learning approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 186(C).
    3. Su, Shiliang & Wang, Zhuolun & Li, Bozhao & Kang, Mengjun, 2022. "Deciphering the influence of TOD on metro ridership: An integrated approach of extended node-place model and interpretable machine learning with planning implications," Journal of Transport Geography, Elsevier, vol. 104(C).
    4. Ying Liang & Wei Song & Xiaofeng Dong, 2021. "Evaluating the Space Use of Large Railway Hub Station Areas in Beijing toward Integrated Station-City Development," Land, MDPI, vol. 10(11), pages 1-22, November.
    5. Robillard, Arianne & Boisjoly, Geneviève & van Lierop, Dea, 2024. "Transit-oriented development and bikeability: Classifying public transport station areas in Montreal, Canada," Transport Policy, Elsevier, vol. 148(C), pages 79-91.
    6. Zheng, Lingwei & Austwick, Martin Zaltz, 2023. "Classifying station areas in greater Manchester using the node-place-design model: A comparative analysis with system centrality and green space coverage," Journal of Transport Geography, Elsevier, vol. 112(C).
    7. Liu, Yudi & Nath, Nabamita & Murayama, Akito & Manabe, Rikutaro, 2022. "Transit-oriented development with urban sprawl? Four phases of urban growth and policy intervention in Tokyo," Land Use Policy, Elsevier, vol. 112(C).
    8. Liao, Cong & Scheuer, Bronte, 2022. "Evaluating the performance of transit-oriented development in Beijing metro station areas: Integrating morphology and demand into the node-place model," Journal of Transport Geography, Elsevier, vol. 100(C).
    9. Su, Shiliang & Zhao, Chong & Zhou, Hao & Li, Bozhao & Kang, Mengjun, 2022. "Unraveling the relative contribution of TOD structural factors to metro ridership: A novel localized modeling approach with implications on spatial planning," Journal of Transport Geography, Elsevier, vol. 100(C).
    10. Md Anwar Uddin & Md Shamsul Hoque & Tahsin Tamanna & Saima Adiba & Shah Md Muniruzzaman & Mohammad Shahriyar Parvez, 2023. "A framework to measure transit-oriented development around transit nodes: Case study of a mass rapid transit system in Dhaka, Bangladesh," PLOS ONE, Public Library of Science, vol. 18(1), pages 1-29, January.
    11. Abdi, Mohammad Hamed, 2021. "What the newcomers to transit-oriented development are confronted with? Evidence from Iranian policy and planning," Journal of Transport Geography, Elsevier, vol. 92(C).
    12. Muhammad Aamir Basheer & Luuk Boelens & Rob van der Bijl, 2020. "Bus Rapid Transit System: A Study of Sustainable Land-Use Transformation, Urban Density and Economic Impacts," Sustainability, MDPI, vol. 12(8), pages 1-22, April.
    13. Teixeira, João Filipe & Silva, Cecília & Seisenberger, Sebastian & Büttner, Benjamin & McCormick, Bartosz & Papa, Enrica & Cao, Mengqiu, 2024. "Classifying 15-minute Cities: A review of worldwide practices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 189(C).
    14. Lo, Huai-Wei & Fang, Tzu-Yi & Lin, Sheng-Wei, 2024. "Integrating technological and strategic analysis: Evaluating the key determinants of transportation sustainability in taipei Mass Rapid Transit using the Rough-Fermatean DEMATEL approach," Socio-Economic Planning Sciences, Elsevier, vol. 94(C).
    15. Islam, Md Rabiul & Saphores, Jean-Daniel M., 2022. "An L.A. story: The impact of housing costs on commuting," Journal of Transport Geography, Elsevier, vol. 98(C).
    16. Wu, Wenjie & Cao, Mengqiu & Wang, Fenglong & Wang, Ruoyu, 2024. "Nonlinear influences of landscape configurations and walking access to transit services on travel satisfaction," Transportation Research Part A: Policy and Practice, Elsevier, vol. 189(C).
    17. Xiang Li & Qipeng Yan & Yafeng Ma & Chen Luo, 2023. "Spatially Varying Impacts of Built Environment on Transfer Ridership of Metro and Bus Systems," Sustainability, MDPI, vol. 15(10), pages 1-24, May.
    18. Tan, Yiru & Zhao, Pengjun & Li, Ling, 2025. "Subway expansion, residential relocation, and travel behavior: Causal evidence from China," Journal of Transport Geography, Elsevier, vol. 124(C).
    19. Yiqian Wang & Yibin Li, 2024. "Revisiting jobs-housing balance: unveiling the impact of housing subsidy policy on residential locations across different income groups," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.
    20. Wang, Jiaoe & Tan, Wenwei & Huang, Jie, 2024. "Extending TOD through the interrelationship between transport and land use: A case study of Beijing," Land Use Policy, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:123:y:2025:i:c:s0966692325000031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.