IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v27y1999i3p349-362.html
   My bibliography  Save this article

Control of complex manufacturing processes: a comparison of SPC methods with a radial basis function neural network

Author

Listed:
  • West, David A.
  • Mangiameli, Paul M.
  • Chen, Shaw K.

Abstract

Manufacturing processes are increasingly subject to tighter control and more frequent monitoring, in many cases using real time data collection systems. It is now recognized that complex interactions of auto and cross-correlation exist in data observations from process industries, batch processes, and the traditional parts industry. New control models that capture both multivariate and time series effects are needed to effectively monitor manufacturing processes. In this research, we investigate the ability of radial basis function neural networks to monitor and control complex manufacturing processes that exhibit both auto and cross-correlation. We demonstrate that the radial basis function network is superior to three control models recently proposed for complex manufacturing processes: multivariate Shewhart, multivariate EWMA, and a feed forward neural network with logistic units trained by back-propagation (often called a back-propagation neural network).

Suggested Citation

  • West, David A. & Mangiameli, Paul M. & Chen, Shaw K., 1999. "Control of complex manufacturing processes: a comparison of SPC methods with a radial basis function neural network," Omega, Elsevier, vol. 27(3), pages 349-362, June.
  • Handle: RePEc:eee:jomega:v:27:y:1999:i:3:p:349-362
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305-0483(98)00053-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Curry, B. & Morgan, P., 1997. "Neural networks: a need for caution," Omega, Elsevier, vol. 25(1), pages 123-133, February.
    2. Alwan, Layth C & Roberts, Harry V, 1988. "Time-Series Modeling for Statistical Process Control," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(1), pages 87-95, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samari, Goleen & Catalano, Ralph & Alcalá, Héctor E. & Gemmill, Alison, 2020. "The Muslim Ban and preterm birth: Analysis of U.S. vital statistics data from 2009 to 2018," Social Science & Medicine, Elsevier, vol. 265(C).
    2. Amira Dridi & Mohamed El Ghourabi & Mohamed Limam, 2012. "On monitoring financial stress index with extreme value theory," Quantitative Finance, Taylor & Francis Journals, vol. 12(3), pages 329-339, March.
    3. Weihs, Claus & Theis, Winfried & Messaoud, Amor & Hering, Franz, 2004. "Monitoring of the BTA Deep Hole Drilling Process Using Residual Control Charts," Technical Reports 2004,60, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    4. Marta Benková & Dagmar Bednárová & Gabriela Bogdanovská & Marcela Pavlíčková, 2023. "Use of Statistical Process Control for Coking Time Monitoring," Mathematics, MDPI, vol. 11(16), pages 1-30, August.
    5. Johannes Freiesleben & Nicolas Gu'erin, 2015. "Homogenization and Clustering as a Non-Statistical Methodology to Assess Multi-Parametrical Chain Problems," Papers 1505.03874, arXiv.org, revised Dec 2017.
    6. repec:lan:wpaper:4408 is not listed on IDEAS
    7. Miguel Flores & Salvador Naya & Rubén Fernández-Casal & Sonia Zaragoza & Paula Raña & Javier Tarrío-Saavedra, 2020. "Constructing a Control Chart Using Functional Data," Mathematics, MDPI, vol. 8(1), pages 1-26, January.
    8. Pendharkar, Parag C., 2002. "A computational study on the performance of artificial neural networks under changing structural design and data distribution," European Journal of Operational Research, Elsevier, vol. 138(1), pages 155-177, April.
    9. Timothy M. Young & Ampalavanar Nanthakumar & Hari Nanthakumar, 2021. "On the Use of Copula for Quality Control Based on an AR(1) Model," Mathematics, MDPI, vol. 9(18), pages 1-13, September.
    10. Thaga K. & Kgosi P. M. & Gabaitiri L., 2007. "Max-Chart for Autocorrelated Processes," Stochastics and Quality Control, De Gruyter, vol. 22(1), pages 87-105, January.
    11. Chiroma, Haruna & Abdulkareem, Sameem & Herawan, Tutut, 2015. "Evolutionary Neural Network model for West Texas Intermediate crude oil price prediction," Applied Energy, Elsevier, vol. 142(C), pages 266-273.
    12. P. Vellaisamy & S. Sankar & M. Taniguchi, 2003. "Estimation and Design of Sampling Plans for Monitoring Dependent Production Processes," Methodology and Computing in Applied Probability, Springer, vol. 5(1), pages 85-108, March.
    13. A. Snoussi, 2011. "SPC for short-run multivariate autocorrelated processes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(10), pages 2303-2312.
    14. repec:lan:wpaper:4839 is not listed on IDEAS
    15. Ord, J. Keith & Koehler, Anne B. & Snyder, Ralph D. & Hyndman, Rob J., 2009. "Monitoring processes with changing variances," International Journal of Forecasting, Elsevier, vol. 25(3), pages 518-525, July.
    16. Gupta, Jatinder N. D. & Sexton, Randall S., 1999. "Comparing backpropagation with a genetic algorithm for neural network training," Omega, Elsevier, vol. 27(6), pages 679-684, December.
    17. Messaoud, Amor & Weihs, Claus & Hering, Franz, 2008. "Detection of chatter vibration in a drilling process using multivariate control charts," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3208-3219, February.
    18. Žmuk Berislav, 2016. "Capabilities of Statistical Residual-Based Control Charts in Short- and Long-Term Stock Trading," Naše gospodarstvo/Our economy, Sciendo, vol. 62(1), pages 12-26, March.
    19. Mohamed El Ghourabi & Amira Dridi & Mohamed Limam, 2015. "A new financial stress index model based on support vector regression and control chart," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(4), pages 775-788, April.
    20. Ridley, D. & Duke, D., 2007. "Moving -window spectral model based statistical process control," International Journal of Production Economics, Elsevier, vol. 105(2), pages 492-509, February.
    21. Gulser Koksal & Burcu Kantar & Taylan Ali Ula & Murat Caner Testik, 2008. "The effect of Phase I sample size on the run length performance of control charts for autocorrelated data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(1), pages 67-87.
    22. Hwarng, H. Brian, 2001. "Insights into neural-network forecasting of time series corresponding to ARMA(p,q) structures," Omega, Elsevier, vol. 29(3), pages 273-289, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:27:y:1999:i:3:p:349-362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.