IDEAS home Printed from https://ideas.repec.org/a/bpj/ecqcon/v22y2007i1p87-105n10.html
   My bibliography  Save this article

Max-Chart for Autocorrelated Processes

Author

Listed:
  • Thaga K.

    (Department of Statistics, University of Botswana, Private Bag UB00705 Gaborone, Botswana)

  • Kgosi P. M.

    (Department of Statistics, University of Botswana, Private Bag UB00705 Gaborone, Botswana)

  • Gabaitiri L.

    (Department of Statistics, University of Botswana, Private Bag UB00705 Gaborone, Botswana)

Abstract

Statistical process control procedures are usually implemented under the assumption that the observations from a process are independent over time. However, this assumption is often violated. Therefore, we propose a single Shewhart-type control chart for autocorrelated process by fitting a time series model into the process and monitoring the residuals from the forecast values of a fitted time series model. Numerical results illustrate the ARL of the AR(1) plus random error model, for the cases of step changes in the mean and/or standard deviation. Compared to other charts that monitor autocorrelated processes, this chart quickly detects shifts in the process location and spread particularly for large shifts.

Suggested Citation

  • Thaga K. & Kgosi P. M. & Gabaitiri L., 2007. "Max-Chart for Autocorrelated Processes," Stochastics and Quality Control, De Gruyter, vol. 22(1), pages 87-105, January.
  • Handle: RePEc:bpj:ecqcon:v:22:y:2007:i:1:p:87-105:n:10
    DOI: 10.1515/EQC.2007.87
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/EQC.2007.87
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/EQC.2007.87?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alwan, Layth C & Roberts, Harry V, 1988. "Time-Series Modeling for Statistical Process Control," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(1), pages 87-95, January.
    2. E. Collani, 1999. "Control of production processes subjectto random shocks," Annals of Operations Research, Springer, vol. 91(0), pages 289-304, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thaga Keoagile, 2008. "Control Chart for Autocorrelated Processes with Heavy Tailed Distributions," Stochastics and Quality Control, De Gruyter, vol. 23(2), pages 197-206, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yue Fang & John Zhang, 1999. "Performance of control charts for autoregressive conditional heteroscedastic processes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(6), pages 701-714.
    2. Ioulia Papageorgiou, 2016. "Sampling from Correlated Populations: Optimal Strategies and Comparison Study," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 78(1), pages 119-151, May.
    3. Gulser Koksal & Burcu Kantar & Taylan Ali Ula & Murat Caner Testik, 2008. "The effect of Phase I sample size on the run length performance of control charts for autocorrelated data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(1), pages 67-87.
    4. Hwarng, H. Brian, 2001. "Insights into neural-network forecasting of time series corresponding to ARMA(p,q) structures," Omega, Elsevier, vol. 29(3), pages 273-289, June.
    5. Samari, Goleen & Catalano, Ralph & Alcalá, Héctor E. & Gemmill, Alison, 2020. "The Muslim Ban and preterm birth: Analysis of U.S. vital statistics data from 2009 to 2018," Social Science & Medicine, Elsevier, vol. 265(C).
    6. Pearn, W.L. & Hsu, Ya-Chen, 2007. "Optimal tool replacement for processes with low fraction defective," European Journal of Operational Research, Elsevier, vol. 180(3), pages 1116-1129, August.
    7. I. Civantos & J. García-Algarra, 2020. "Analysis of telecom service operation behavior with time series," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 25-34, March.
    8. George Box & Alberto Luceno, 2002. "Feedforward as a supplement to feedback adjustment in allowing for feedstock changes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 29(8), pages 1241-1254.
    9. Messaoud, Amor & Weihs, Claus & Hering, Franz, 2008. "Detection of chatter vibration in a drilling process using multivariate control charts," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3208-3219, February.
    10. Jeffrey E. Jarrett & Xia Pan, 2007. "Monitoring Variability and Analyzing Multivariate Autocorrelated Processes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(4), pages 459-469.
    11. Barbeito, Inés & Zaragoza, Sonia & Tarrío-Saavedra, Javier & Naya, Salvador, 2017. "Assessing thermal comfort and energy efficiency in buildings by statistical quality control for autocorrelated data," Applied Energy, Elsevier, vol. 190(C), pages 1-17.
    12. Chen, Yikai & Durango-Cohen, Pablo L., 2015. "Development and field application of a multivariate statistical process control framework for health-monitoring of transportation infrastructure," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 78-102.
    13. von Collani Elart & Baur Karl, 2002. "Prediction Intervals, Tolerance Intervals and Standards in Quality Control - Part 1," Stochastics and Quality Control, De Gruyter, vol. 17(1), pages 81-98, January.
    14. Amira Dridi & Mohamed El Ghourabi & Mohamed Limam, 2012. "On monitoring financial stress index with extreme value theory," Quantitative Finance, Taylor & Francis Journals, vol. 12(3), pages 329-339, March.
    15. Li, Yanting & Wu, Zhenyu, 2020. "A condition monitoring approach of multi-turbine based on VAR model at farm level," Renewable Energy, Elsevier, vol. 166(C), pages 66-80.
    16. A. A. Kalgonda & S. R. Kulkarni, 2004. "Multivariate Quality Control Chart for Autocorrelated Processes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(3), pages 317-327.
    17. Croux, C. & Gelper, S. & Mahieu, K., 2010. "Robust Control Charts for Time Series Data," Discussion Paper 2010-107, Tilburg University, Center for Economic Research.
    18. Weihs, Claus & Theis, Winfried & Messaoud, Amor & Hering, Franz, 2004. "Monitoring of the BTA Deep Hole Drilling Process Using Residual Control Charts," Technical Reports 2004,60, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    19. Žmuk Berislav, 2016. "Capabilities of Statistical Residual-Based Control Charts in Short- and Long-Term Stock Trading," Naše gospodarstvo/Our economy, Sciendo, vol. 62(1), pages 12-26, March.
    20. P. Vellaisamy & S. Sankar, 2005. "A Unified Approach for Modeling and Designing Attribute Sampling Plans for Monitoring Dependent Production Processes," Methodology and Computing in Applied Probability, Springer, vol. 7(3), pages 307-323, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ecqcon:v:22:y:2007:i:1:p:87-105:n:10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.