IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v99y2008i5p858-879.html
   My bibliography  Save this article

On Mardia's and Song's measures of kurtosis in elliptical distributions

Author

Listed:
  • Zografos, K.

Abstract

The main objective of this paper is the calculation and the comparative study of two general measures of multivariate kurtosis, namely Mardia's measure [beta]2,p and Song's measure . In this context, general formulas for the said measures are derived for the broad family of the elliptically contoured symmetric distributions and also for specific members of this family, like the multivariate t-distribution, the multivariate Pearson type II, the multivariate Pearson type VII, the multivariate symmetric Kotz type distribution and the uniform distribution in the unit sphere. Analytic expressions for computing Shannon and Renyi entropies are obtained under the elliptic family. The behaviour of Mardia's and Song's measures, their similarities and differences, possible interpretations and uses in practice are investigated by comparing them in specific members of the elliptic family of multivariate distributions. An empirical estimator of Song's measure is moreover proposed and its asymptotic distribution is investigated under the elliptic family of multivariate distributions.

Suggested Citation

  • Zografos, K., 2008. "On Mardia's and Song's measures of kurtosis in elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 858-879, May.
  • Handle: RePEc:eee:jmvana:v:99:y:2008:i:5:p:858-879
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(07)00077-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zografos, K. & Nadarajah, S., 2005. "Expressions for Rényi and Shannon entropies for multivariate distributions," Statistics & Probability Letters, Elsevier, vol. 71(1), pages 71-84, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Loperfido, Nicola, 2020. "Some remarks on Koziol’s kurtosis," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    2. Leonenko, Nikolaj & Seleznjev, Oleg, 2010. "Statistical inference for the [epsilon]-entropy and the quadratic Rényi entropy," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 1981-1994, October.
    3. Iwashita, Toshiya & Klar, Bernhard, 2014. "The joint distribution of Studentized residuals under elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 203-209.
    4. Baishuai Zuo & Narayanaswamy Balakrishnan & Chuancun Yin, 2023. "An analysis of multivariate measures of skewness and kurtosis of skew-elliptical distributions," Papers 2311.18176, arXiv.org.
    5. Batsidis, Apostolos & Zografos, Konstantinos, 2013. "A necessary test of fit of specific elliptical distributions based on an estimator of Song’s measure," Journal of Multivariate Analysis, Elsevier, vol. 113(C), pages 91-105.
    6. Faliva, Mario & Quatto, Piero & Zoia, Maria Grazia, 2018. "Gram–Charlier-like expansions of power-raised hyperbolic secant laws," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 229-234.
    7. Baishuai Zuo & Chuancun Yin & Jing Yao, 2023. "Multivariate range Value-at-Risk and covariance risk measures for elliptical and log-elliptical distributions," Papers 2305.09097, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhattacharya, Bhaskar, 2006. "Maximum entropy characterizations of the multivariate Liouville distributions," Journal of Multivariate Analysis, Elsevier, vol. 97(6), pages 1272-1283, July.
    2. Vuong, Q.N. & Bedbur, S. & Kamps, U., 2013. "Distances between models of generalized order statistics," Journal of Multivariate Analysis, Elsevier, vol. 118(C), pages 24-36.
    3. Nathan Lassance & Frédéric Vrins, 2021. "Minimum Rényi entropy portfolios," Annals of Operations Research, Springer, vol. 299(1), pages 23-46, April.
    4. Burkschat, M. & Kamps, U. & Kateri, M., 2010. "Sequential order statistics with an order statistics prior," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1826-1836, September.
    5. Withers, Christopher S. & Nadarajah, Saralees, 2011. "Estimates of low bias for the multivariate normal," Statistics & Probability Letters, Elsevier, vol. 81(11), pages 1635-1647, November.
    6. Daya K. Nagar & Saralees Nadarajah & Idika E. Okorie, 2017. "A New Bivariate Distribution with One Marginal Defined on the Unit Interval," Annals of Data Science, Springer, vol. 4(3), pages 405-420, September.
    7. Leonenko, Nikolaj & Seleznjev, Oleg, 2010. "Statistical inference for the [epsilon]-entropy and the quadratic Rényi entropy," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 1981-1994, October.
    8. Ebrahimi, Nader & Jalali, Nima Y. & Soofi, Ehsan S., 2014. "Comparison, utility, and partition of dependence under absolutely continuous and singular distributions," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 32-50.
    9. Carol Alexander & José María Sarabia, 2012. "Quantile Uncertainty and Value‐at‐Risk Model Risk," Risk Analysis, John Wiley & Sons, vol. 32(8), pages 1293-1308, August.
    10. Burkschat Marco & Kamps Udo & Kateri Maria, 2013. "Estimating scale parameters under an order statistics prior," Statistics & Risk Modeling, De Gruyter, vol. 30(3), pages 205-219, August.
    11. W. V. Félix de Lima & A. D. C. Nascimento & G. J. A. Amaral, 2021. "Entropy-based pivotal statistics for multi-sample problems in planar shape," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 153-178, March.
    12. Nader Ebrahimi & S.N.U.A. Kirmani & Ehsan S. Soofi, 2011. "Predictability of operational processes over finite horizon," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(6), pages 531-545, September.
    13. Asadi, Majid & Ebrahimi, Nader & Soofi, Ehsan S., 2005. "Dynamic generalized information measures," Statistics & Probability Letters, Elsevier, vol. 71(1), pages 85-98, January.
    14. Contreras-Reyes, Javier E., 2014. "Asymptotic form of the Kullback–Leibler divergence for multivariate asymmetric heavy-tailed distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 200-208.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:99:y:2008:i:5:p:858-879. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.