IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Maximum entropy characterizations of the multivariate Liouville distributions

  • Bhattacharya, Bhaskar
Registered author(s):

    A random vector X=(X1,X2,...,Xn) with positive components has a Liouville distribution with parameter [theta]=([theta]1,[theta]2,...,[theta]n) if its joint probability density function is proportional to , [theta]i>0 [R.D. Gupta, D.S.P. Richards, Multivariate Liouville distributions, J. Multivariate Anal. 23 (1987) 233-256]. Examples include correlated gamma variables, Dirichlet and inverted Dirichlet distributions. We derive appropriate constraints which establish the maximum entropy characterization of the Liouville distributions among all multivariate distributions. Matrix analogs of the Liouville distributions are considered. Some interesting results related to I-projection from a Liouville distribution are presented.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 97 (2006)
    Issue (Month): 6 (July)
    Pages: 1272-1283

    in new window

    Handle: RePEc:eee:jmvana:v:97:y:2006:i:6:p:1272-1283
    Contact details of provider: Web page:

    Order Information: Postal:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Zografos, K., 1999. "On Maximum Entropy Characterization of Pearson's Type II and VII Multivariate Distributions," Journal of Multivariate Analysis, Elsevier, vol. 71(1), pages 67-75, October.
    2. Gokhale, D. V., 1983. "On entropy-based goodness-of-fit tests," Computational Statistics & Data Analysis, Elsevier, vol. 1(1), pages 157-165, March.
    3. Karlin, Samuel & Rinott, Yosef, 1980. "Classes of orderings of measures and related correlation inequalities. I. Multivariate totally positive distributions," Journal of Multivariate Analysis, Elsevier, vol. 10(4), pages 467-498, December.
    4. Peddada, Shyamal Das & Richards, Donald St. P., 1991. "Entropy inequalities for some multivariate distributions," Journal of Multivariate Analysis, Elsevier, vol. 39(1), pages 202-208, October.
    5. Silviu Guiasu, 1990. "A classification of the main probability distributions by minimizing the weighted logarithmic measure of deviation," Annals of the Institute of Statistical Mathematics, Springer, vol. 42(2), pages 269-279, June.
    6. Zografos, K. & Nadarajah, S., 2005. "Expressions for Rényi and Shannon entropies for multivariate distributions," Statistics & Probability Letters, Elsevier, vol. 71(1), pages 71-84, January.
    7. Gupta, Rameshwar D. & Richards, Donald St.P., 1987. "Multivariate Liouville distributions," Journal of Multivariate Analysis, Elsevier, vol. 23(2), pages 233-256, December.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:97:y:2006:i:6:p:1272-1283. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.