IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v191y2022ics0047259x22000367.html
   My bibliography  Save this article

Estimating multivariate density and its derivatives for mixed measurement error data

Author

Listed:
  • Guo, Linruo
  • Song, Weixing
  • Shi, Jianhong

Abstract

In this paper, we propose a nonparametric mixed kernel estimator for a multivariate density function and its derivatives when the data are contaminated with different sources of measurement errors. The proposed estimator is a mixture of the classical and the deconvolution kernels, accounting for the error-free and error-prone variables, respectively. Large sample properties of the proposed nonparametric estimator, including the order of the mean squares error, the consistency, and the asymptotic normality, are thoroughly investigated. The optimal convergence rates among all nonparametric estimators for different measurement error structures are derived, and it is shown that the proposed mixed kernel estimators achieve the optimal convergence rate. A simulation study is conducted to evaluate the finite sample performance of the proposed estimators.

Suggested Citation

  • Guo, Linruo & Song, Weixing & Shi, Jianhong, 2022. "Estimating multivariate density and its derivatives for mixed measurement error data," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:jmvana:v:191:y:2022:i:c:s0047259x22000367
    DOI: 10.1016/j.jmva.2022.105005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X22000367
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2022.105005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Masry, E., 1993. "Asymptotic Normality for Deconvolution Estimators of Multivariate Densities of Stationary Processes," Journal of Multivariate Analysis, Elsevier, vol. 44(1), pages 47-68, January.
    2. Masry, Elias, 1993. "Strong consistency and rates for deconvolution of multivariate densities of stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 47(1), pages 53-74, August.
    3. Fan, Jianqing & Masry, Elias, 1992. "Multivariate regression estimation with errors-in-variables: Asymptotic normality for mixing processes," Journal of Multivariate Analysis, Elsevier, vol. 43(2), pages 237-271, November.
    4. Raymond J. Carroll & Aurore Delaigle & Peter Hall, 2007. "Non‐parametric regression estimation from data contaminated by a mixture of Berkson and classical errors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 859-878, November.
    5. Anderson, Dale N., 1992. "A multivariate Linnik distribution," Statistics & Probability Letters, Elsevier, vol. 14(4), pages 333-336, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seçil Yalaz, 2019. "Multivariate partially linear regression in the presence of measurement error," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(1), pages 123-135, March.
    2. Ioannides, D. A. & Alevizos, P. D., 1997. "Nonparametric regression with errors in variables and applications," Statistics & Probability Letters, Elsevier, vol. 32(1), pages 35-43, February.
    3. Jeon, Jeong Min & Van Keilegom, Ingrid, 2023. "Density estimation for mixed Euclidean and non-Euclidean data in the presence of measurement error," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    4. Zhou, Yong & Liang, Hua, 2000. "Asymptotic Normality for L1 Norm Kernel Estimator of Conditional Median under [alpha]-Mixing Dependence," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 136-154, April.
    5. Guillermo Basulto-Elias & Alicia L. Carriquiry & Kris Brabanter & Daniel J. Nordman, 2021. "Bivariate Kernel Deconvolution with Panel Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 122-151, May.
    6. Delaigle, Aurore & Meister, Alexander, 2007. "Nonparametric Regression Estimation in the Heteroscedastic Errors-in-Variables Problem," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1416-1426, December.
    7. Masry, Elias, 1997. "Multivariate probability density estimation by wavelet methods: Strong consistency and rates for stationary time series," Stochastic Processes and their Applications, Elsevier, vol. 67(2), pages 177-193, May.
    8. Masry, Elias, 2005. "Nonparametric regression estimation for dependent functional data: asymptotic normality," Stochastic Processes and their Applications, Elsevier, vol. 115(1), pages 155-177, January.
    9. Yousri Slaoui, 2021. "Data-driven Deconvolution Recursive Kernel Density Estimators Defined by Stochastic Approximation Method," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 312-352, February.
    10. Mynbaev, Kairat & Martins-Filho, Carlos, 2015. "Consistency and asymptotic normality for a nonparametric prediction under measurement errors," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 166-188.
    11. Liang, Han-Ying & de Ua-lvarez, Jacobo, 2009. "A Berry-Esseen type bound in kernel density estimation for strong mixing censored samples," Journal of Multivariate Analysis, Elsevier, vol. 100(6), pages 1219-1231, July.
    12. Christian Hesse, 1995. "Deconvolving a density from contaminated dependent observations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(4), pages 645-663, December.
    13. Huijun Guo & Youming Liu, 2019. "Regression estimation under strong mixing data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 553-576, June.
    14. Marco Di Marzio & Stefania Fensore & Charles C. Taylor, 2023. "Kernel regression for errors-in-variables problems in the circular domain," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(4), pages 1217-1237, October.
    15. Marianna Pensky & Ahmed Zayed, 2002. "Density Deconvolution of Different Conditional Distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(3), pages 701-712, September.
    16. Delaigle, Aurore & Fan, Jianqing & Carroll, Raymond J., 2009. "A Design-Adaptive Local Polynomial Estimator for the Errors-in-Variables Problem," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 348-359.
    17. Song, Weixing, 2008. "Model checking in errors-in-variables regression," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2406-2443, November.
    18. Dhaene, J. & Henrard, L. & Landsman, Z. & Vandendorpe, A. & Vanduffel, S., 2008. "Some results on the CTE-based capital allocation rule," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 855-863, April.
    19. Hao Dong & Daniel L. Millimet, 2020. "Propensity Score Weighting with Mismeasured Covariates: An Application to Two Financial Literacy Interventions," JRFM, MDPI, vol. 13(11), pages 1-24, November.
    20. Yang Zu, 2015. "A Note on the Asymptotic Normality of the Kernel Deconvolution Density Estimator with Logarithmic Chi-Square Noise," Econometrics, MDPI, vol. 3(3), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:191:y:2022:i:c:s0047259x22000367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.