IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v100y2009i6p1219-1231.html
   My bibliography  Save this article

A Berry-Esseen type bound in kernel density estimation for strong mixing censored samples

Author

Listed:
  • Liang, Han-Ying
  • de Ua-lvarez, Jacobo

Abstract

In this paper, we discuss the estimation of a density function based on censored data by the kernel smoothing method when the survival and the censoring times form a stationary [alpha]-mixing sequence. A Berry-Esseen type bound is derived for the kernel density estimator at a fixed point x. For practical purposes, a randomly weighted estimator of the density function is also constructed and investigated.

Suggested Citation

  • Liang, Han-Ying & de Ua-lvarez, Jacobo, 2009. "A Berry-Esseen type bound in kernel density estimation for strong mixing censored samples," Journal of Multivariate Analysis, Elsevier, vol. 100(6), pages 1219-1231, July.
  • Handle: RePEc:eee:jmvana:v:100:y:2009:i:6:p:1219-1231
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00250-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eckhard Liebscher, 2002. "Kernel Density and Hazard Rate Estimation for Censored Data under α-Mixing Condition," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(1), pages 19-28, March.
    2. Cai, Zongwu, 2001. "Estimating a Distribution Function for Censored Time Series Data," Journal of Multivariate Analysis, Elsevier, vol. 78(2), pages 299-318, August.
    3. Masry, E., 1993. "Asymptotic Normality for Deconvolution Estimators of Multivariate Densities of Stationary Processes," Journal of Multivariate Analysis, Elsevier, vol. 44(1), pages 47-68, January.
    4. Masry, Elias, 1993. "Strong consistency and rates for deconvolution of multivariate densities of stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 47(1), pages 53-74, August.
    5. Koehler, K. J. & Symanowski, J. T., 1995. "Constructing Multivariate Distributions with Specific Marginal Distributions," Journal of Multivariate Analysis, Elsevier, vol. 55(2), pages 261-282, November.
    6. R.D. Gill, 1980. "Censoring and Stochastic Integrals," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 34(2), pages 124-124, June.
    7. Cai, Zongwu, 1998. "Asymptotic properties of Kaplan-Meier estimator for censored dependent data," Statistics & Probability Letters, Elsevier, vol. 37(4), pages 381-389, March.
    8. Diehl, Sabine & Stute, Winfried, 1988. "Kernel density and hazard function estimation in the presence of censoring," Journal of Multivariate Analysis, Elsevier, vol. 25(2), pages 299-310, May.
    9. Zhou, Yong & Liang, Hua, 2000. "Asymptotic Normality for L1 Norm Kernel Estimator of Conditional Median under [alpha]-Mixing Dependence," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 136-154, April.
    10. Xiang, X. J., 1994. "Law of the Logarithm for Density and Hazard Rate Estimation for Censored Data," Journal of Multivariate Analysis, Elsevier, vol. 49(2), pages 278-286, May.
    11. Liebscher E., 2001. "Estimation Of The Density And The Regression Function Under Mixing Conditions," Statistics & Risk Modeling, De Gruyter, vol. 19(1), pages 9-26, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Min & Yang, Wenzhi & Wu, Shipeng & Yu, Wei, 2022. "Asymptotic normality of residual density estimator in stationary and explosive autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 175(C).
    2. Zhou, Xing-cai & Xu, Ying-zhi & Lin, Jin-guan, 2017. "Wavelet estimation in varying coefficient models for censored dependent data," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 179-189.
    3. Yi Wu & Wei Yu & Xuejun Wang, 2022. "Strong representations of the Kaplan–Meier estimator and hazard estimator with censored widely orthant dependent data," Computational Statistics, Springer, vol. 37(1), pages 383-402, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han-Ying Liang & Jacobo Uña-Álvarez, 2011. "Asymptotic properties of conditional quantile estimator for censored dependent observations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(2), pages 267-289, April.
    2. Einmahl, J.H.J. & Deheuvels, P., 2000. "Functional limit laws for the increments of Kaplan-Meier product-limit processes and applications," Other publications TiSEM ac9bbdc0-62f8-4b48-9a84-1, Tilburg University, School of Economics and Management.
    3. Liang, Han-Ying & Peng, Liang, 2010. "Asymptotic normality and Berry-Esseen results for conditional density estimator with censored and dependent data," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1043-1054, May.
    4. Zhou, Xing-cai & Xu, Ying-zhi & Lin, Jin-guan, 2017. "Wavelet estimation in varying coefficient models for censored dependent data," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 179-189.
    5. Yi Wu & Wei Yu & Xuejun Wang, 2022. "Strong representations of the Kaplan–Meier estimator and hazard estimator with censored widely orthant dependent data," Computational Statistics, Springer, vol. 37(1), pages 383-402, March.
    6. Junshan Shen & Shuyuan He, 2008. "Empirical likelihood confidence intervals for hazard and density functions under right censorship," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(3), pages 575-589, September.
    7. Sun, Liuquan & Zhou, Yong, 1998. "Sequential confidence bands for densities under truncated and censored data," Statistics & Probability Letters, Elsevier, vol. 40(1), pages 31-41, September.
    8. Guillermo Basulto-Elias & Alicia L. Carriquiry & Kris Brabanter & Daniel J. Nordman, 2021. "Bivariate Kernel Deconvolution with Panel Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 122-151, May.
    9. Mokkadem, Abdelkader & Pelletier, Mariane, 2021. "A compact law of the iterated logarithm for online estimator of hazard rate under random censoring," Statistics & Probability Letters, Elsevier, vol. 178(C).
    10. Guo, Linruo & Song, Weixing & Shi, Jianhong, 2022. "Estimating multivariate density and its derivatives for mixed measurement error data," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
    11. Seçil Yalaz, 2019. "Multivariate partially linear regression in the presence of measurement error," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(1), pages 123-135, March.
    12. Masry, Elias, 1997. "Multivariate probability density estimation by wavelet methods: Strong consistency and rates for stationary time series," Stochastic Processes and their Applications, Elsevier, vol. 67(2), pages 177-193, May.
    13. Cai, Zongwu, 1998. "Kernel Density and Hazard Rate Estimation for Censored Dependent Data," Journal of Multivariate Analysis, Elsevier, vol. 67(1), pages 23-34, October.
    14. Cai, Zongwu, 2001. "Estimating a Distribution Function for Censored Time Series Data," Journal of Multivariate Analysis, Elsevier, vol. 78(2), pages 299-318, August.
    15. Yousri Slaoui, 2021. "Data-driven Deconvolution Recursive Kernel Density Estimators Defined by Stochastic Approximation Method," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 312-352, February.
    16. Kitouni, Abderrahim & Boukeloua, Mohamed & Messaci, Fatiha, 2015. "Rate of strong consistency for nonparametric estimators based on twice censored data," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 255-261.
    17. BOUEZMARNI, Taoufik & ROMBOUTS, Jeroen V. K., 2006. "Density and hazard rate estimation for censored and a-mixing data using gamma kernels," LIDAM Discussion Papers CORE 2006118, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    18. Ioannides, D. A. & Alevizos, P. D., 1997. "Nonparametric regression with errors in variables and applications," Statistics & Probability Letters, Elsevier, vol. 32(1), pages 35-43, February.
    19. Jeon, Jeong Min & Van Keilegom, Ingrid, 2023. "Density estimation for mixed Euclidean and non-Euclidean data in the presence of measurement error," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    20. Fakoor, Vahid & Jomhoori, Sarah & Azarnoosh, Hasanali, 2009. "Asymptotic expansion for ISE of kernel density estimators under censored dependent model," Statistics & Probability Letters, Elsevier, vol. 79(17), pages 1809-1817, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:100:y:2009:i:6:p:1219-1231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.