IDEAS home Printed from
   My bibliography  Save this article

Kernel Density and Hazard Rate Estimation for Censored Dependent Data


  • Cai, Zongwu


In some long term studies, a series of dependent and possibly censored failure times may be observed. Suppose that the failure times have a common marginal distribution function having a density, and the nonparametric estimation of density and hazard rate under random censorship is of our interest. In this paper, we establish the asymptotic normality and the uniform consistency (with rates) of the kernel estimators for density and hazard function under a censored dependent model. A numerical study elucidates the behavior of the estimators for moderately large sample sizes.

Suggested Citation

  • Cai, Zongwu, 1998. "Kernel Density and Hazard Rate Estimation for Censored Dependent Data," Journal of Multivariate Analysis, Elsevier, vol. 67(1), pages 23-34, October.
  • Handle: RePEc:eee:jmvana:v:67:y:1998:i:1:p:23-34

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Cai, Zongwu, 1998. "Asymptotic properties of Kaplan-Meier estimator for censored dependent data," Statistics & Probability Letters, Elsevier, vol. 37(4), pages 381-389, March.
    2. Diehl, Sabine & Stute, Winfried, 1988. "Kernel density and hazard function estimation in the presence of censoring," Journal of Multivariate Analysis, Elsevier, vol. 25(2), pages 299-310, May.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Diallo, Amadou Oury Korbe & Louani, Djamal, 2013. "Moderate and large deviation principles for the hazard rate function kernel estimator under censoring," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 735-743.
    2. Liang Han-Ying & Mammitzsch Volker & Steinebach Josef, 2005. "Nonlinear wavelet density and hazard rate estimation for censored data under dependent observations," Statistics & Risk Modeling, De Gruyter, vol. 23(3/2005), pages 161-180, March.
    3. Maya, R. & Abdul-Sathar, E.I. & Rajesh, G., 2014. "Non-parametric estimation of the generalized past entropy function with censored dependent data," Statistics & Probability Letters, Elsevier, vol. 90(C), pages 129-135.
    4. Fakoor, V., 2010. "Strong uniform consistency of kernel density estimators under a censored dependent model," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 318-323, March.
    5. Taoufik Bouezmarni & Jeroen V.K. Rombouts, 2006. "Density and Hazard Rate Estimation for Censored and ?-mixing Data Using Gamma Kernels," Cahiers de recherche 06-16, HEC Montréal, Institut d'économie appliquée.
    6. Sun, Liuquan & Zhou, Xian, 2001. "Survival function and density estimation for truncated dependent data," Statistics & Probability Letters, Elsevier, vol. 52(1), pages 47-57, March.
    7. R. Maya & E. Abdul-Sathar & G. Rajesh & K. Muraleedharan Nair, 2014. "Estimation of the Renyi’s residual entropy of order $$\alpha $$ with dependent data," Statistical Papers, Springer, vol. 55(3), pages 585-602, August.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:67:y:1998:i:1:p:23-34. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.