IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v169y2019icp300-311.html
   My bibliography  Save this article

Improved loss estimation for a normal mean matrix

Author

Listed:
  • Matsuda, Takeru
  • Strawderman, William E.

Abstract

We investigate improved loss estimation in the matrix mean estimation problem. Specifically, for estimators of a normal mean matrix, we consider estimation of the Frobenius loss. Based on the singular values of the observation, we develop loss estimators that dominate the unbiased loss estimator for a broad class of matrix mean estimators including the Efron–Morris estimator. This is an extension of the results of Johnstone (1988) for a normal mean vector. We also provide improved estimators of loss for reduced-rank estimators. Numerical results show the effectiveness of the proposed loss estimators.

Suggested Citation

  • Matsuda, Takeru & Strawderman, William E., 2019. "Improved loss estimation for a normal mean matrix," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 300-311.
  • Handle: RePEc:eee:jmvana:v:169:y:2019:i:c:p:300-311
    DOI: 10.1016/j.jmva.2018.10.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X17302324
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dominique Fourdrinier & William Strawderman, 2003. "On Bayes and unbiased estimators of loss," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(4), pages 803-816, December.
    2. Tsukuma, Hisayuki & Kubokawa, Tatsuya, 2007. "Methods for improvement in estimation of a normal mean matrix," Journal of Multivariate Analysis, Elsevier, vol. 98(8), pages 1592-1610, September.
    3. Aurélie Boisbunon & Stéphane Canu & Dominique Fourdrinier & William Strawderman & Martin T. Wells, 2014. "Akaike's Information Criterion, C p and Estimators of Loss for Elliptically Symmetric Distributions," International Statistical Review, International Statistical Institute, vol. 82(3), pages 422-439, December.
    4. Konno, Yoshihiko, 1991. "On estimation of a matrix of normal means with unknown covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 36(1), pages 44-55, January.
    5. A. Mukherjee & K. Chen & N. Wang & J. Zhu, 2015. "On the degrees of freedom of reduced-rank estimators in multivariate regression," Biometrika, Biometrika Trust, vol. 102(2), pages 457-477.
    6. repec:eee:stapro:v:135:y:2018:i:c:p:76-82 is not listed on IDEAS
    7. Carl Eckart & Gale Young, 1936. "The approximation of one matrix by another of lower rank," Psychometrika, Springer;The Psychometric Society, vol. 1(3), pages 211-218, September.
    8. Takeru Matsuda & Fumiyasu Komaki, 2015. "Singular value shrinkage priors for Bayesian prediction," Biometrika, Biometrika Trust, vol. 102(4), pages 843-854.
    9. Tsukuma, Hisayuki, 2008. "Admissibility and minimaxity of Bayes estimators for a normal mean matrix," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2251-2264, November.
    10. Tsukuma, Hisayuki & Kubokawa, Tatsuya, 2015. "A unified approach to estimating a normal mean matrix in high and low dimensions," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 312-328.
    11. Zheng, Z., 1986. "On estimation of matrix of normal mean," Journal of Multivariate Analysis, Elsevier, vol. 18(1), pages 70-82, February.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:169:y:2019:i:c:p:300-311. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.