IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

A Unified Approach to Estimating a Normal Mean Matrix in High and Low Dimensions

  • Hisayuki Tsukuma

    (Faculty of Medicine, Toho University)

  • Tatsuya Kubokawa

    (Faculty of Economics, The University of Tokyo)

Registered author(s):

       This paper addresses the problem of estimating the normal mean matrix with an unknown covariance matrix. Motivated by an empirical Bayes method, we suggest a uni ed form of the Efron-Morris type estimators based on the Moore-Penrose inverse. This form not only can be de ned for any dimension and any sample size, but also can contain the Efron-Morris type or Baranchik type estimators suggested so far in the literature. Also, the uni ed form suggests a general class of shrinkage estimators. For shrinkage estimators within the general class, a uni ed expression of unbiased estimators of the risk functions is derived regardless of the dimension of covariance matrix and the size of the mean matrix. An analytical dominance result is provided for a positive-part rule of the shrinkage estimators.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.cirje.e.u-tokyo.ac.jp/research/dp/2014/2014cf926.pdf
    Download Restriction: no

    Paper provided by CIRJE, Faculty of Economics, University of Tokyo in its series CIRJE F-Series with number CIRJE-F-926.

    as
    in new window

    Length: 28 pages
    Date of creation: Mar 2014
    Date of revision:
    Handle: RePEc:tky:fseres:2014cf926
    Contact details of provider: Postal: Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033
    Phone: +81-3-5841-5644
    Fax: +81-3-5841-8294
    Web page: http://www.cirje.e.u-tokyo.ac.jp/index.html
    Email:


    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Tsukuma, Hisayuki, 2010. "Shrinkage minimax estimation and positive-part rule for a mean matrix in an elliptically contoured distribution," Statistics & Probability Letters, Elsevier, vol. 80(3-4), pages 215-220, February.
    2. Tsukuma, Hisayuki & Kubokawa, Tatsuya, 2007. "Methods for improvement in estimation of a normal mean matrix," Journal of Multivariate Analysis, Elsevier, vol. 98(8), pages 1592-1610, September.
    3. Konno, Yoshihiko, 1991. "On estimation of a matrix of normal means with unknown covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 36(1), pages 44-55, January.
    4. Bilodeau, Martin & Kariya, Takeaki, 1989. "Minimax estimators in the normal MANOVA model," Journal of Multivariate Analysis, Elsevier, vol. 28(2), pages 260-270, February.
    5. Konno, Yoshihiko, 2009. "Shrinkage estimators for large covariance matrices in multivariate real and complex normal distributions under an invariant quadratic loss," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2237-2253, November.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2014cf926. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CIRJE administrative office)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.