IDEAS home Printed from
   My bibliography  Save this paper

Methods for Improvement in Estimation of a Normal Mean Matrix


  • Hisayuki Tsukuma

    (Faculty of Economics, University of Tokyo)

  • Tatsuya Kubokawa

    (Faculty of Economics, University of Tokyo)


This paper is concerned with the problem of estimating a matrix of means in multivariate normal distributions with an unknown covariance matrix under the quadratic loss function. It is first shown that the modified Efron-Morris estimator is characterized as certain empirical Bayes estimator. This estimator modifies the crude Efron-Morris estimator by adding a scalar shrinkage term. It is next shown that the idea of this modification provides the general method for improvement of estimators, which results in the further improvement of several minimax estimators including the Stein, Dey and Haff estimators. As a new method for improvement, a random combination of the modified Stein and the James-Stein estimators is also proposed and is shown to be minimax. Through Monte Carlo studies for the risk behaviors, it is numerically shown that the proposed, combined estimator inherits the nice risk properties of both individual estimators and thus it has a very favorable risk behavior in a small sample case.

Suggested Citation

  • Hisayuki Tsukuma & Tatsuya Kubokawa, 2005. "Methods for Improvement in Estimation of a Normal Mean Matrix," CIRJE F-Series CIRJE-F-378, CIRJE, Faculty of Economics, University of Tokyo.
  • Handle: RePEc:tky:fseres:2005cf378

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Bilodeau, Martin & Kariya, Takeaki, 1989. "Minimax estimators in the normal MANOVA model," Journal of Multivariate Analysis, Elsevier, vol. 28(2), pages 260-270, February.
    2. Loh, Wei-Liem, 1991. "Estimating covariance matrices II," Journal of Multivariate Analysis, Elsevier, vol. 36(2), pages 163-174, February.
    3. Konno, Yoshihiko, 1991. "On estimation of a matrix of normal means with unknown covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 36(1), pages 44-55, January.
    4. Ghosh, Malay & Shieh, Gwowen, 1991. "Empirical Bayes minimax estimators of matrix normal means," Journal of Multivariate Analysis, Elsevier, vol. 38(2), pages 306-318, August.
    5. Dey, Dipak K., 1987. "Improved estimation of a multinormal precision matrix," Statistics & Probability Letters, Elsevier, vol. 6(2), pages 125-128, November.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Tsukuma, Hisayuki & Kubokawa, Tatsuya, 2007. "Methods for improvement in estimation of a normal mean matrix," Journal of Multivariate Analysis, Elsevier, vol. 98(8), pages 1592-1610, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2005cf378. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CIRJE administrative office). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.