IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v97y2006i7p1477-1500.html
   My bibliography  Save this article

On improved estimation of normal precision matrix and discriminant coefficients

Author

Listed:
  • Tsukuma, Hisayuki
  • Konno, Yoshihiko

Abstract

The problem of estimating the precision matrix of a multivariate normal distribution model is considered with respect to a quadratic loss function. A number of covariance estimators originally intended for a variety of loss functions are adapted so as to obtain alternative estimators of the precision matrix. It is shown that the alternative estimators have analytically smaller risks than the unbiased estimator of the precision matrix. Through numerical studies of risk values, it is shown that the new estimators have substantial reduction in risk. In addition, we consider the problem of the estimation of discriminant coefficients, which arises in linear discriminant analysis when Fisher's linear discriminant function is viewed as the posterior log-odds under the assumption that two classes differ in mean but have a common covariance matrix. The above method is also adapted for this problem in order to obtain improved estimators of the discriminant coefficients under the quadratic loss function. Furthermore, a numerical study is undertaken to compare the properties of a collection of alternatives to the "unbiased" estimator of the discriminant coefficients.

Suggested Citation

  • Tsukuma, Hisayuki & Konno, Yoshihiko, 2006. "On improved estimation of normal precision matrix and discriminant coefficients," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1477-1500, August.
  • Handle: RePEc:eee:jmvana:v:97:y:2006:i:7:p:1477-1500
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(05)00200-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haff, L. R., 1979. "An identity for the Wishart distribution with applications," Journal of Multivariate Analysis, Elsevier, vol. 9(4), pages 531-544, December.
    2. Dey D. K. & Ghosh M. & Srinivasan C., 1990. "A New Class Of Improved Estimators Of A Multinormal Precision Matrix," Statistics & Risk Modeling, De Gruyter, vol. 8(2), pages 141-152, February.
    3. Xian Zhou & Xiaoqian Sun & Jinglong Wang, 2001. "Estimation of the Multivariate Normal Precision Matrix under the Entropy Loss," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(4), pages 760-768, December.
    4. Haff, L. R., 1977. "Minimax estimators for a multinormal precision matrix," Journal of Multivariate Analysis, Elsevier, vol. 7(3), pages 374-385, September.
    5. Dey, Dipak K. & Srinivasan, C., 1991. "On estimation of discriminant coefficients," Statistics & Probability Letters, Elsevier, vol. 11(3), pages 189-193, March.
    6. Dey, Dipak K., 1987. "Improved estimation of a multinormal precision matrix," Statistics & Probability Letters, Elsevier, vol. 6(2), pages 125-128, November.
    7. Perron, F., 1992. "Minimax estimators of a covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 43(1), pages 16-28, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bodnar, Taras & Okhrin, Yarema, 2008. "Properties of the singular, inverse and generalized inverse partitioned Wishart distributions," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2389-2405, November.
    2. Fourdrinier, Dominique & Mezoued, Fatiha & Wells, Martin T., 2016. "Estimation of the inverse scatter matrix of an elliptically symmetric distribution," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 32-55.
    3. Bodnar, Taras & Gupta, Arjun K. & Parolya, Nestor, 2016. "Direct shrinkage estimation of large dimensional precision matrix," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 223-236.
    4. Stéphane Canu & Dominique Fourdrinier, 2023. "Data based loss estimation of the mean of a spherical distribution with a residual vector," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(8), pages 851-878, November.
    5. Piotr Graczyk & Hideyuki Ishi & Salha Mamane, 2019. "Wishart exponential families on cones related to tridiagonal matrices," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(2), pages 439-471, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fourdrinier, Dominique & Mezoued, Fatiha & Wells, Martin T., 2016. "Estimation of the inverse scatter matrix of an elliptically symmetric distribution," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 32-55.
    2. Chételat, Didier & Wells, Martin T., 2016. "Improved second order estimation in the singular multivariate normal model," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 1-19.
    3. Tsukuma, Hisayuki, 2014. "Bayesian estimation of a bounded precision matrix," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 160-172.
    4. Kubokawa, Tatsuya & Srivastava, Muni S., 2008. "Estimation of the precision matrix of a singular Wishart distribution and its application in high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 1906-1928, October.
    5. Tsukuma, Hisayuki, 2016. "Estimation of a high-dimensional covariance matrix with the Stein loss," Journal of Multivariate Analysis, Elsevier, vol. 148(C), pages 1-17.
    6. Pensky, Marianna, 1999. "Nonparametric Empirical Bayes Estimation of the Matrix Parameter of the Wishart Distribution," Journal of Multivariate Analysis, Elsevier, vol. 69(2), pages 242-260, May.
    7. Kourtis, Apostolos & Dotsis, George & Markellos, Raphael N., 2012. "Parameter uncertainty in portfolio selection: Shrinking the inverse covariance matrix," Journal of Banking & Finance, Elsevier, vol. 36(9), pages 2522-2531.
    8. Sheena Yo & Gupta Arjun K., 2003. "Estimation of the multivariate normal covariance matrix under some restrictions," Statistics & Risk Modeling, De Gruyter, vol. 21(4/2003), pages 327-342, April.
    9. Sun, Xiaoqian & Zhou, Xian, 2008. "Improved minimax estimation of the bivariate normal precision matrix under the squared loss," Statistics & Probability Letters, Elsevier, vol. 78(2), pages 127-134, February.
    10. Xiangyu Cui & Xuan Zhang, 2021. "Index tracking strategy based on mixed-frequency financial data," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-15, April.
    11. Besson, Olivier & Vincent, François & Gendre, Xavier, 2020. "A Stein’s approach to covariance matrix estimation using regularization of Cholesky factor and log-Cholesky metric," Statistics & Probability Letters, Elsevier, vol. 167(C).
    12. Joel Bun & Jean-Philippe Bouchaud & Marc Potters, 2016. "Cleaning large correlation matrices: tools from random matrix theory," Papers 1610.08104, arXiv.org.
    13. Perron, François, 1997. "On a Conjecture of Krishnamoorthy and Gupta, ," Journal of Multivariate Analysis, Elsevier, vol. 62(1), pages 110-120, July.
    14. Andrew F. Siegel & Artemiza Woodgate, 2007. "Performance of Portfolios Optimized with Estimation Error," Management Science, INFORMS, vol. 53(6), pages 1005-1015, June.
    15. Tatsuya Kubokawa & M. S. Srivastava, 1999. ""Estimating the Covariance Matrix: A New Approach", June 1999," CIRJE F-Series CIRJE-F-52, CIRJE, Faculty of Economics, University of Tokyo.
    16. K. Krishnamoorthy, 1991. "Estimation of a common multivariate normal mean vector," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(4), pages 761-771, December.
    17. Francesco Lautizi, 2015. "Large Scale Covariance Estimates for Portfolio Selection," CEIS Research Paper 353, Tor Vergata University, CEIS, revised 07 Aug 2015.
    18. Konno, Yoshihiko, 2009. "Shrinkage estimators for large covariance matrices in multivariate real and complex normal distributions under an invariant quadratic loss," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2237-2253, November.
    19. Tsukada, Shin-ichi, 2014. "Asymptotic expansion for distribution of the trace of a covariance matrix under a two-step monotone incomplete sample," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 206-219.
    20. Elfessi, Abdulaziz & Chun Jin, 1996. "On robust estimation of the common scale parameter of several Pareto distributions," Statistics & Probability Letters, Elsevier, vol. 29(4), pages 345-352, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:97:y:2006:i:7:p:1477-1500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.